Exact results for supersymmetric abelian vortex loops in 2 + 1 dimensions

被引:0
作者
Anton Kapustin
Brian Willett
Itamar Yaakov
机构
[1] California Institute of Technology,Department of Physics
[2] Institute for Advanced Study,Department of Physics
[3] Princeton Univerity,undefined
来源
Journal of High Energy Physics | / 2013卷
关键词
Supersymmetric gauge theory; Duality in Gauge Field Theories; Solitons Monopoles and Instantons;
D O I
暂无
中图分类号
学科分类号
摘要
We define a class of supersymmetric defect loop operators in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 gauge theories in 2 + 1 dimensions. We give a prescription for computing the expectation value of such operators in a generic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 theory on the three-sphere using localization. We elucidate the role of defect loop operators in IR dualities of supersymmetric gauge theories, and write down their transformation properties under the SL(2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{Z} $\end{document}) action on conformal theories with abelian global symmetries.
引用
收藏
相关论文
共 27 条
[1]  
’t Hooft G(1978)On the Phase Transition Towards Permanent Quark Confinement Nucl. Phys. B 138 1-undefined
[2]  
Montonen C(1977)Magnetic Monopoles as Gauge Particles? Phys. Lett. B 72 117-undefined
[3]  
Olive DI(1978)Supersymmetry Algebras That Include Topological Charges Phys. Lett. B 78 97-undefined
[4]  
Witten E(2006)Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality Phys. Rev. D 74 025005-undefined
[5]  
Olive DI(2009)Vortex Loop Operators, M2-branes and Holography JHEP 03 004-undefined
[6]  
Kapustin A(1989)Taming the Conformal Zoo Phys. Lett. B 220 422-undefined
[7]  
Drukker N(1989)Quantum Field Theory and the Jones Polynomial Commun. Math. Phys. 121 351-undefined
[8]  
Gomis J(2012)Localization of gauge theory on a four-sphere and supersymmetric Wilson loops Commun. Math. Phys. 313 71-undefined
[9]  
Young D(1995)Localization and diagonalization: A review of functional integral techniques for low dimensional gauge theories and topological field theories J. Math. Phys. 36 2192-undefined
[10]  
Moore GW(1988)Topological Quantum Field Theory Commun. Math. Phys. 117 353-undefined