Short-Distance Symmetry of Pair Correlations in Two-Dimensional Jellium

被引:0
作者
Ladislav Šamaj
机构
[1] Slovak Academy of Sciences,Institute of Physics
来源
Journal of Statistical Physics | 2020年 / 178卷
关键词
Coulomb fluids; Jellium; Logarithmic interaction; Sum rules;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the two-dimensional one-component plasma (jellium) of mobile pointlike particles with the same charge e, interacting pairwisely by the logarithmic Coulomb potential and immersed in a fixed neutralizing background charge density. Particles are in thermal equilibrium at the inverse temperature β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, the only relevant dimensionless parameter is the coupling constant Γ≡βe2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma \equiv \beta e^2$$\end{document}. In the bulk fluid regime and for any value of the coupling constant Γ=2×integer\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma =2\times \mathrm{integer}$$\end{document}, Šamaj and Percus (J Stat Phys 80:811–824, 1995) have derived an infinite sequence of sum rules for the coefficients of the short-distance expansion of particle pair correlation function. In the context of the equivalent fractional quantum Hall effect, by using specific methods of quantum geometry Haldane (Phys Rev Lett 107:116801, 2011; arXiv:1112.0990v2, 2011) derived a self-dual relation for the Landau-level guiding-center structure factor. In this paper, we establish the relation between the guiding-center structure factor and the pair correlation function of jellium particles. It is shown that the self-dual formula, which provides an exact relation between the pair correlation function and its Fourier component, comes directly from the short-distance symmetry of the bulk jellium. The short-distant symmetry of pair correlations is extended to the semi-infinite geometry of a rectilinear plain hard wall with a fixed surface charge density, constraining particles to a half-space. The symmetry is derived for the original jellium model as well as its simplified version with no background charge (charged wall surface with “counter-ions only”). The obtained results are checked at the exactly solvable free-fermion coupling Γ=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma =2$$\end{document}.
引用
收藏
页码:247 / 264
页数:17
相关论文
共 34 条
  • [1] Alastuey A(1981)On the classical two-dimensional one-component Coulomb plasma J. Phys. 42 1-12
  • [2] Jancovici B(1978)On the compressibility of a one-component plasma J. Phys. A 11 2451-2462
  • [3] Baus M(1980)Statistical mechanics of simple Coulomb systems Phys. Rep. 59 1-94
  • [4] Baus M(1994)Laughlin’s wave functions, Coulomb gases and expansions of the discriminant Int. J. Mod. Phys. A 9 4257-4351
  • [5] Hansen JP(1998)Exact results for two-dimensional Coulomb systems Phys. Rep. 301 235-270
  • [6] Di Francesco P(2011)Geometrical description of the fractional quantum Hall effect Phys. Rev. Lett. 107 116801-370
  • [7] Gaudin M(1977)Pair correlation function in a dense plasma and pycnonuclear reactions in stars J. Stat. Phys. 17 357-388
  • [8] Itzykson C(1981)Exact results for the two-dimensional one-component plasma Phys. Rev. Lett. 46 386-65
  • [9] Lesage F(1982)Classical Coulomb systems near a plane wall. I. J. Stat. Phys. 28 43-815
  • [10] Forrester PJ(1984)Surface properties of a classical two-dimensional one-component plasma: exact results J. Stat. Phys. 34 803-666