Calogero Operator and Lie Superalgebras

被引:0
作者
A. N. Sergeev
机构
[1] Institute of Technique,
[2] Technology,undefined
[3] and Control,undefined
来源
Theoretical and Mathematical Physics | 2002年 / 131卷
关键词
Calogero operator; Jack polynomial; Lie superalgebra; symmetric superspace; spherical function;
D O I
暂无
中图分类号
学科分类号
摘要
We construct a supersymmetric analogue of the Calogero operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{S}\mathcal{L}$$ \end{document}, which depends on the parameter k. This analogue is related to the root system of the Lie superalgebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$gl{\text{(}}n{\text{|}}m{\text{)}}$$ \end{document}. It becomes the standard Calogero operator for m = 0 and becomes the operator constructed by Veselov, Chalykh, and Feigin up to changing the variables and the parameter k for m = 1. For k = 1 and 1/2, the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{S}\mathcal{L}$$ \end{document} is the radial part of the second-order Laplace operator for the symmetric superspaces corresponding to the respective pairs \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(gl \oplus gl,gl) and(gl,osp){\text{ }}$$ \end{document}. We show that for any m and n, the supersymmetric analogues of the Jack polynomials constructed by Kerov, Okounkov, and Olshanskii are eigenfunctions of the operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{S}\mathcal{L}$$ \end{document}. For k = 1 and 1/2, the supersymmetric analogues of the Jack polynomials coincide with the spherical functions on the above superspaces. We also study the algebraic analogue of the Berezin integral.
引用
收藏
页码:747 / 764
页数:17
相关论文
共 23 条
[1]  
Sergeev A.(2001)undefined J. Nonlinear Math. Phys. 8 59-undefined
[2]  
Brink L.(1993)undefined Nucl. Phys. B 401 591-undefined
[3]  
Hanson T.(1983)undefined Funct. Anal. Appl. 17 200-undefined
[4]  
Konstein S.(1983)undefined Phys. Rep. 94 313-undefined
[5]  
Vasiliev M.(1996)undefined Russ. Math. Surveys 51 573-undefined
[6]  
Serganova V.(1999)undefined Comm. Math. Phys. 206 533-undefined
[7]  
Olshanetsky M.(1996)undefined Comm. Math. Phys. 178 425-undefined
[8]  
Perelomov A.(1996)undefined Adv. Math. 77 76-undefined
[9]  
Veselov A. P.(1998)undefined Internat. Math. Res. Notices 4 173-undefined
[10]  
Feigin M. V.(1984)undefined Math. USSR Sb. 51 419-undefined