Special Affine Fourier Transform for Space-Time Algebra Signals in Detail

被引:0
作者
Eckhard Hitzer
机构
[1] International Christian University,
来源
Advances in Applied Clifford Algebras | 2022年 / 32卷
关键词
Clifford’s geometric algebra; Space-time; Space-time algebra; Special affine Fourier transform; Uncertainty principle;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize the space-time Fourier transform (SFT) (Hitzer in Adv Appl Clifford Algebras 17(3):497–517, 2007) to a special affine Fourier transform (SASFT, also known as offset linear canonical transform) for 16-dimensional space-time multivector Cl(3, 1)-valued signals over the domain of space-time (Minkowski space) R3,1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{3,1}.$$\end{document} We establish how it can be computed in terms of the SFT, and introduce its properties of multivector coefficient linearity, shift and modulation, inversion, Rayleigh (Parseval) energy theorem, partial derivative identities, a directional uncertainty principle and its specialization to coordinates. All important results are proven in full detail.
引用
收藏
相关论文
共 14 条
  • [1] Abe S(1994)Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation an operator approach J. Phys. A Math. Gen. 27 4179-4187
  • [2] Sheridan JT(1994)Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation Opt. Lett. 19 1801-1803
  • [3] Abe S(2015)Pitt’s inequality and the uncertainty principle associated with the quaternion Fourier transform J. Math. Anal. Appl. 423 681-700
  • [4] Sheridan JT(2020)Heisenberg’s and Hardy’s uncertainty principles for special relativistic space-time Fourier transformation Adv. Appl. Clifford Algebras 30 69-517
  • [5] Chen L-P(2021)Generalized uncertainty principles associated with the quaternionic offset linear canonical transform Complex Var. Elliptic Equ. 17 497-284
  • [6] Kou KI(2007)Quaternion Fourier transform on quaternion fields and generalizations Adv. Appl. Clifford Algebras 20 271-undefined
  • [7] Liu M-S(2010)Directional uncertainty principle for quaternion Fourier transform Adv. Appl. Clifford Algebras undefined undefined-undefined
  • [8] El Haoui Y(undefined)undefined undefined undefined undefined-undefined
  • [9] Hitzer E(undefined)undefined undefined undefined undefined-undefined
  • [10] Fahlaoui S(undefined)undefined undefined undefined undefined-undefined