Stable Structures of Nonlinear Parabolic Equations with Transformation of Spatial Variables

被引:0
作者
A. A. Kornuta
V. A. Lukianenko
机构
[1] V.I. Vernadsky Crimean Federal University,
来源
Lobachevskii Journal of Mathematics | 2021年 / 42卷
关键词
nonlinear parabolic equations with involution in the spatial variable; metastable structures; center manifold method; Galerkin approximation of approximate solutions;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:911 / 930
页数:19
相关论文
共 40 条
[1]  
Belan E. P.(2011)Two-dimensional stationary structures in a parabolic equation with reflection of spatial variables Cybern. Syst. Anal. 47 33-41
[2]  
Belan E. P.(2005)“On the dynamics of traveling waves in a parabolic equation with a transformation of the shift of the spatial variable,” Zh Math. Phys., Anal., Geom. 1 3-34
[3]  
Belan E. P.(2004)On the interaction of traveling waves in a parabolic functional differential equation Differ. Uravn. 40 645-654
[4]  
Belan E. P.(2014)Dynamics of stationary structures in a parabolic problem on a circle with reflection of a spatial variable Din. Sist. 4 43-57
[5]  
Khazova Yu. A.(2009)Autooscillatory regimes of combustion along the strip Din. Sist. 27 3-16
[6]  
Belan E. P.(2004)Rotating structures in a parabolic functional differential equation Differ. Equat. 40 1348-1357
[7]  
Shiyan O. V.(2007)On the Andronov-Hopf bifurcation for quasilinear parabolic functional differential equations with transformations of space variables Usp. Mat. Nauk 62 173-174
[8]  
Belan E. P.(2007)On some properties of elliptic and parabolic functional differential operators arising in nonlinear optics Sovrem. Mat. Fundam. Napravl. 21 5-36
[9]  
Lykova O. B.(1979)On the minimum of a quadratic functional and linear boundary value problems of elliptic type with deviating arguments Usp. Mat. Nauk 34 147-198
[10]  
Varfolomeev E. M.(2014)Metastable structures in a parabolic equation with rotation of the spatial variable Dinam. Sist. 4 59-75