Multiverse dark matter: SUSY or axions

被引:0
作者
Francesco D’Eramo
Lawrence J. Hall
Duccio Pappadopulo
机构
[1] University of California,Berkeley Center for Theoretical Physics, Department of Physics and Theoretical Physics Group, Lawrence Berkeley National Laboratory
来源
Journal of High Energy Physics | / 2014卷
关键词
Beyond Standard Model; Cosmology of Theories beyond the SM;
D O I
暂无
中图分类号
学科分类号
摘要
The observed values of the cosmological constant and the abundance of Dark Matter (DM) can be successfully understood, using certain measures, by imposing the anthropic requirement that density perturbations go non-linear and virialize to form halos. This requires a probability distribution favoring low amounts of DM, i.e. low values of the PQ scale f for the QCD axion and low values of the superpartner mass scale m˜\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{m} $$\end{document} for LSP thermal relics. In theories with independent scanning of multiple DM components, there is a high probability for DM to be dominated by a single component. For example, with independent scanning of f and m˜\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{m} $$\end{document}, TeV-scale LSP DM and an axion solution to the strong CP problem are unlikely to coexist. With thermal LSP DM, the scheme allows an understanding of a Little SUSY Hierarchy with multi-TeV superpartners. Alternatively, with axion DM, PQ breaking before (after) inflation leads to f typically below (below) the projected range of the current ADMX experiment of f = (3 − 30) × 1011 GeV, providing strong motivation to develop experimental techniques for probing lower f.
引用
收藏
相关论文
共 89 条
  • [1] Weinberg S(1987)Anthropic bound on the cosmological constant Phys. Rev. Lett. 59 2607-undefined
  • [2] Martel H(1998)Likely values of the cosmological constant Astrophys. J. 492 29-undefined
  • [3] Shapiro PR(2006)Holographic probabilities in eternal inflation Phys. Rev. Lett. 97 191302-undefined
  • [4] Weinberg S(2007)Predicting the cosmological constant from the causal entropic principle Phys. Rev. D 76 043513-undefined
  • [5] Bousso R(2011)A geometric solution to the coincidence problem and the size of the landscape as the origin of hierarchy Phys. Rev. Lett. 106 101301-undefined
  • [6] Bousso R(2011)Geometric origin of coincidences and hierarchies in the landscape Phys. Rev. D 84 083517-undefined
  • [7] Harnik R(2006)Dimensionless constants, cosmology and other dark matters Phys. Rev. D 73 023505-undefined
  • [8] Kribs GD(2009)Multiverse understanding of cosmological coincidences Phys. Rev. D 80 063510-undefined
  • [9] Perez G(2008)Evidence for the multiverse in the standard model and beyond Phys. Rev. D 78 035001-undefined
  • [10] Bousso R(2010)Anthropic explanation of the dark matter abundance JCAP 03 021-undefined