Existence and concentration of positive solutions for a Schrödinger logarithmic equation

被引:0
作者
Claudianor O. Alves
Daniel C.  de Morais Filho
机构
[1] Universidade Federal de Campina Grande,Unidade Acadêmica de Matemática
来源
Zeitschrift für angewandte Mathematik und Physik | 2018年 / 69卷
关键词
Variational methods; Logarithmic Shrödinger equation; Positive solutions; 35A15; 35J10; 35B09;
D O I
暂无
中图分类号
学科分类号
摘要
This article concerns with the existence and concentration of positive solutions for the following logarithmic elliptic equation -ϵ2Δu+V(x)u=ulogu2,inRN,u∈H1(RN),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lc} -{\epsilon }^2\Delta u+ V(x)u=u \log u^2, &{} \text{ in } \quad \mathbb {R}^{N}, \\ u \in H^1(\mathbb {R}^{N}), &{} \; \\ \end{array}\right. \end{aligned}$$\end{document}where ϵ>0,N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0, N \ge 3$$\end{document} and V is a continuous function with a global minimum. Using variational method developed by Szulkin (Ann Inst H Poincaré Anal Non Linéaire 3:77–109, 1986) for functionals which are sum of a C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} functional with a convex lower semicontinuous functional, we prove, for small enough ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document}, the existence of positive solutions and concentration around of a minimum point of V, when ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} approaches zero. We also study the cases when V is periodic or asymptotically periodic.
引用
收藏
相关论文
共 31 条
[1]  
Alves CO(2005)Multiplicity of positive solutions for a quasilinear problem in Adv. Nonlinear Stud. 5 551-572
[2]  
Figueiredo GM(2006) via penalization method Differ. Integral Equ. 19 143-162
[3]  
Alves CO(1997)Existence and multiplicity of positive solutions to a p-Laplacian equation in Arch. Rational Mech. Anal. 140 285-300
[4]  
Figueiredo GM(1997)Semiclassical states of nonlinear Schrödinger equations Topol. Methods Nonlinear Anal. 10 1-13
[5]  
Ambrosetti A(2014)Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations Commun. Contemp. Math. 16 1350032-5216
[6]  
Badiale M(2015)On the logarithmic Schrödinger equation Math. Methods Appl. Sci. 38 5207-137
[7]  
Cingolani S(1996)Fractional logarithmic Schrödinger equations Calc. Var. Partial Differ. Equ. 4 121-1393
[8]  
Cingolani S(2000)Local mountain pass for semilinear elliptic problems in unbounded domains Math. Comput. Model. 32 1377-408
[9]  
Lazzo M(1986)Multiple solutions of semilinear elliptic equations with one-sided growth conditions, nonlinear operator theory J. Funct. Anal. 69 397-254
[10]  
d’Avenia P(2016)Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential J. Math. Anal. Appl. 437 241-253