Simultaneous and non-simultaneous blow-up for heat equations with coupled nonlinear boundary fluxes

被引:0
作者
Fengjie Li
Bingchen Liu
Sining Zheng
机构
[1] China University of Petroleum,School of Mathematics and Computational Sciences
[2] Dalian University of Technology,Department of Applied Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2007年 / 58卷
关键词
Primary 35K05, 35K60, 35B40, 35B33; Simultaneous blow-up; non-simultaneous blow-up; blow-up rate; blow-up set; critical global existence exponent;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with simultaneous and non-simultaneous blow-up for heat equations coupled via nonlinear boundary fluxes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\partial u}{\partial\eta} = u^{m} + v^{p}, \frac{\partial v}{\partial\eta} = u^{q} + v^{n}$$ \end{document}. It is proved that, if m < q + 1 and n < p + 1, then blow-up must be simultaneous, and that, for radially symmetric and nondecreasing in time solutions, non-simultaneous blow-up occurs for some initial data if and only if m > q + 1 or n > p + 1. We find three regions: (i) q + 1 < m < p/(p + 1 − n) and n < p+1, (ii) p + 1 < n < q/(q + 1 − m) and m < q+1, (iii) m > q+1 and n > p+1, where both simultaneous and non-simultaneous blow-up are possible. Four different simultaneous blow-up rates are obtained under different conditions. It is interesting that different initial data may lead to different simultaneous blow-up rates even for the same values of the exponent parameters.
引用
收藏
页码:717 / 735
页数:18
相关论文
empty
未找到相关数据