Supersymmetric gauge theory, (2,0) theory and twisted 5d Super-Yang-Mills

被引:0
作者
Kazuya Yonekura
机构
[1] School of Natural Sciences,
[2] Institute for Advanced Study,undefined
来源
Journal of High Energy Physics | / 2014卷
关键词
Supersymmetric gauge theory; Field Theories in Higher Dimensions; Duality in Gauge Field Theories;
D O I
暂无
中图分类号
学科分类号
摘要
Twisted compactification of the 6d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = (2, 0) theories on a punctured Riemann surface give a large class of 4d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 gauge theories, called class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{S} $\end{document}. We argue that nonperturbative dynamics of class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{S} $\end{document} theories are described by 5d maximal Super-Yang-Mills (SYM) twisted on the Riemann surface. In a sense, twisted 5d SYM might be regarded as a “Lagrangian” for class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{S} $\end{document} theories on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\mathbb{R}}^{1,2 }}\times {S^1} $\end{document}. First, we show that twisted 5d SYM gives generalized Hitchin’s equations which was proposed recently. Then, we discuss how to identify chiral operators with quantities in twisted 5d SYM. Mesons, or holomorphic moment maps, are identified with operators at punctures which are realized as 3d superconformal theories Tρ[G] coupled to twisted 5d SYM. “Baryons” are identified qualitatively through a study of 4d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 Higgs branches. We also derive a simple formula for dynamical superpotential vev which is relevant for BPS domain wall tensions. With these tools, we examine many examples of 4d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 1 theories with several phases such as confining, Higgs, and Coulomb phases, and show perfect agreements between field theories and twisted 5d SYM. Spectral curve is an essential tool to solve generalized Hitchin’s equations, and our results clarify the physical information encoded in the curve.
引用
收藏
相关论文
共 194 条
  • [1] Witten E(1997)Solutions of four-dimensional field theories via M-theory Nucl. Phys. B 500 3-undefined
  • [2] Hori K(1998)Strong coupling dynamics of four-dimensional N = 1 gauge theories from M-theory five-brane Adv. Theor. Math. Phys. 1 1-undefined
  • [3] Ooguri H(1997)Branes and the dynamics of QCD Nucl. Phys. B 507 658-undefined
  • [4] Oz Y(2001)Supergravity description of field theories on curved manifolds and a no go theorem Int. J. Mod. Phys. A 16 822-undefined
  • [5] Witten E(2012)N = 2 dualities JHEP 08 034-undefined
  • [6] Maldacena JM(2007)S-duality in N = 2 supersymmetric gauge theories JHEP 12 088-undefined
  • [7] Núñez C(1996)An N = 2 superconformal fixed point with E Nucl. Phys. B 482 142-undefined
  • [8] Gaiotto D(1998) global symmetry Nucl. Phys. B 534 531-undefined
  • [9] Argyres PC(1987)Solution of N = 2 gauge theories via compactification to three-dimensions Proc. Lond. Math. Soc. 55 59-undefined
  • [10] Seiberg N(1987)The selfduality equations on a Riemann surface Duke Math. J. 54 91-undefined