Hardy-Littlewood series and even continued fractions

被引:0
作者
Tanguy Rivoal
Stéphane Seuret
机构
[1] Université Grenoble 1,Institut Fourier CNRS UMR 5582
[2] Université Paris-Est,LAMA (UMR 8050) UPEMLV UPEC, CNRS
来源
Journal d'Analyse Mathématique | 2015年 / 125卷
关键词
Hausdorff Dimension; Continue Fraction; Irrational Number; Absolute Convergence; Theta Series;
D O I
暂无
中图分类号
学科分类号
摘要
By a result of Hardy-Littlewood concerning the growth of the sums \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\nolimits_{n = 1}^N {{e^{i\pi {n^2}x}}} $$\end{document}, for each s ∈ (1/2, 1], the series \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F_s}(x) = \sum\nolimits_{n = 1}^\infty {{e^{i\pi {n^2}x/{n^s}}}} $$\end{document} converges almost everywhere but not everywhere on [−1, 1]. However, there does not yet exist an intrinsic description of the set of convergence for Fs. In this paper, we define in terms of even continued fractions a subset of [−1, 1] of full measure where the series converges. As an intermediate step, we prove that for s > 0, the sequence of functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum\limits_{n = 1}^N {\frac{{{e^{i\pi {n^2}x}}}}{{{n^S}}} - {e^{{\text{sign}}(x)i\frac{\pi }{4}}}|x{|^{S - \frac{1}{2}}}\sum\limits_{n = 1}^{\left\lfloor {N|x|} \right\rfloor } {\frac{{{e^{ - i\pi {n^2}/x}}}}{{{n^S}}}} } $$\end{document} converges as N → ∞ to a function Ωs continuous on [−1, 1] \ {0} with (at most) a singularity at x = 0 of type x(s−1)/2 (s ≠ 1) or a logarithmic singularity (s = 1). We provide an explicit expression for Ωs and the error term. Finally, we study thoroughly the convergence properties of certain series defined in terms of the convergents of the even continued fraction of an irrational number.
引用
收藏
页码:175 / 225
页数:50
相关论文
共 20 条
[1]  
Bettin S.(2013)Period functions and cotangent sums Algebra Number Theory 7 215-242
[2]  
Conrey B.(2011)Limiting curlicue measures for theta sums Ann. Inst. Henri Poincaré Probab. Stat. 47 466-497
[3]  
Cellarosi F.(1998)The approximate functional formula for the theta function and Diophantine Gauss sums Trans. Amer. Math. Soc. 350 615-641
[4]  
Coutsias E. A.(1991)Self-similarity of “Riemann’s nondifferentiable function” Nieuw Arch. Wisk. (4) 9 303-337
[5]  
Kazarinoff N. D.(1971)More on the differentiability of the Riemann function Amer. J. Math. 93 33-41
[6]  
Duistermaat J. J.(1914)Some problems of diophantine approximation Acta Math. 37 193-239
[7]  
Gerver J.(1981)Differentiability of Riemann’s function Proc. Japan Acad. Ser. A Math. Sci. 57 492-495
[8]  
Hardy G. H.(1996)The spectrum of singularities of Riemann’s function Rev. Mat. Iberoamericana 12 441-460
[9]  
Littlewood J. E.(1996)The theta group and the continued fraction expansion with even partial quotients Geom. Dedicata 59 293-333
[10]  
Itatsu S.(1986)The differentiability of Fourier gap series and “Riemann’s example” of a continuous, nondifferentiable function J. Approx. Theory 48 303-321