Lower and upper bounds of Stokes eigenvalue problem based on stabilized finite element methods

被引:0
作者
Pengzhan Huang
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
Calcolo | 2015年 / 52卷
关键词
Stokes eigenvalue problem; Stabilized methods; Lower and upper bounds; Lowest equal-order pair; Local Gauss integration; 65N25; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
Two stabilized finite element methods for the Stokes eigenvalue problem based on the lowest equal-order finite element pair are given. They are stabilized conforming element and nonconforming element with local Gauss integration. By using the stabilized nonconforming finite element method, the lower bound of the Stokes eigenvalue is obtained; by using the stabilized conforming finite element method, the upper bound of the Stokes eigenvalue is given. Moreover, numerical tests confirm the theoretical results of the presented methods.
引用
收藏
页码:109 / 121
页数:12
相关论文
共 78 条
[1]  
Babuska I(1989)Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems Math. Comput. 52 275-297
[2]  
Osborn JE(1976)Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier–Stokes equations SIAM J. Numer. Anal. 13 185-197
[3]  
Osborn J(2010)Finite element approximation of eigenvalue problems Acta Numer. 19 1-120
[4]  
Boffi D(2006)Edge element computation of Maxwell’s eigenvalues on general quadrilateral meshes Math. Models Methods Appl. Sci. 16 265-273
[5]  
Boffi D(2004)Asymptotic lower bounds for eigenvalues by nonconforming finite element methods Electron. Trans. Numer. Anal. 17 93-101
[6]  
Kikuchi F(2003)A posteriori error estimates for the finite element approximation of eigenvalue problems Math. Models Methods Appl. Sci. 13 1219-1229
[7]  
Schöberl J(2009)Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method Appl. Numer. Math. 59 1884-1893
[8]  
Armentano MG(1991)Fourth order eigenvalue approximation by extrapolation on domains with reentrant corners Numer. Math. 58 631-640
[9]  
Durán RG(2012)Eigenvalue approximations from below using Morley elements Adv. Comput. Math. 36 443-450
[10]  
Durán RG(2010)Lower spectral bounds by Wilson’s brick discretization Appl. Numer. Math. 60 782-787