On Quasiconvex Subgroups of Word Hyperbolic Groups

被引:0
作者
G. N. Arzhantseva
机构
[1] Université de Genève,Section de Mathématiques
来源
Geometriae Dedicata | 2001年 / 87卷
关键词
word hyperbolic groups; quasiconvex subgroups; commensurator;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a quasiconvex subgroup H of infinite index of a torsion free word hyperbolic group can be embedded in a larger quasiconvex subgroup which is the free product of H and an infinite cyclic group. Some properties of quasiconvex subgroups of word hyperbolic group are also discussed.
引用
收藏
页码:191 / 208
页数:17
相关论文
共 18 条
  • [1] Baumslag G.(1994)Unsolvable problems about small cancel-lation and word hyperbolic groups Bull. London Math Soc. 26 97-101
  • [2] Miller C. F.(1975)Induced representations of discrete groups Proc. Amer. Math. Soc. 47 279-287
  • [3] Short H.(1998)Widths of subgroups Trans. Amer. Math. Soc. 350 321-329
  • [4] Corwin L.(1974)Commensurable groups of Moebius transformations Discontinuous Groups and Riemann Surfaces (College Park), 1973), Ann. of Math. Stud. 79 227-237
  • [5] Gitik R.(1999)Howson property and one-relator groups Comm. Algebra 27 1057-1072
  • [6] Mitra M.(1996)Greenberg's theorem for quasiconvex subgroups of word hyperbolic groups Canad. J. Math. 48 1224-1244
  • [7] Rips E.(1974)Arithmetic properties of discrete subgroups Russian Math. Surveys 29 107-156
  • [8] Sageev M.(1994)Quasiconvex subgroups of negatively curved groups J. Pure Appl. Algebra 95 297-301
  • [9] Greenberg L.(1991)Periodic quotients of hyperbolic groups Mat. Zb. 182 543-567
  • [10] Kapovich I.(1993)On residualing homomorphisms and G-subgroups of hyperbolic groups Int. J. Algebra Comput. 3 365-409