Quadratic Life Span of Periodic Gravity-capillary Water Waves

被引:0
作者
M. Berti
R. Feola
L. Franzoi
机构
[1] SISSA,
[2] University of Nantes,undefined
来源
Water Waves | 2021年 / 3卷
关键词
Gravity capillary water waves; Long time existence; Birkhoff normal form;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the gravity-capillary water waves equations for a bi-dimensional fluid with a periodic one-dimensional free surface. We prove a rigorous reduction of this system to Birkhoff normal form up to cubic degree. Due to the possible presence of three-wave resonances for general values of gravity, surface tension, and depth, such normal form may be not trivial and exhibit a chaotic dynamics (Wilton ripples). Nevertheless, we prove that for all the values of gravity, surface tension, and depth, initial data that are of size ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varepsilon $$\end{document} in a sufficiently smooth Sobolev space leads to a solution that remains in an ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varepsilon $$\end{document}-ball of the same Sobolev space up times of order ε-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varepsilon ^{-2}$$\end{document}. We exploit that the three-wave resonances are finitely many, and the Hamiltonian nature of the Birkhoff normal form.
引用
收藏
页码:85 / 115
页数:30
相关论文
共 57 条
  • [1] Alazard T(2011)On the water-wave equations with surface tension Duke Math. J. 158 413-499
  • [2] Burq N(2015)Global solutions and asymptotic behavior for two dimensional gravity water waves Ann. Sci. Éc. Norm. Supér. 48 1149-1238
  • [3] Zuily C(2009)Paralinearization of the Dirichlet to Neumann operator, and regularity of the three dimensional water waves Comm. Partial Differ. Equ. 34 1632-1704
  • [4] Alazard T(2003)Well-posedness of vortex sheets with surface tension SIAM J. Math. Anal. 35 211-244
  • [5] Delort J-M(2018)Time quasi-periodic gravity water waves in finite depth Invent. Math. 214 739-911
  • [6] Alazard T(1998)On the Cauchy problem for a capillary drop. I. Irrotational motion Math. Methods Appl. Sci. 21 1149-1183
  • [7] Métivier G(2010)Strichartz estimates for the water-wave problem with surface tension Comm. Partial Differ. Equ. 35 2195-2252
  • [8] Ambrose DM(2007)Well-posedness of the free-surface incompressible Euler equations with or without surface tension J. Am. Math. Soc. 20 829-930
  • [9] Baldi P(1985)An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits Comm. Partial Differ. Equ. 10 787-1003
  • [10] Berti M(1993)Numerical simulation of gravity waves J. Comput. Phys. 108 73-83