Direct and Inverse Problems for the Matrix Sturm–Liouville Operator with General Self-Adjoint Boundary Conditions

被引:0
作者
N. P. Bondarenko
机构
[1] Samara National Research University,
[2] Saratov State University,undefined
来源
Mathematical Notes | 2021年 / 109卷
关键词
matrix Sturm–Liouville operator; singular potential; Sturm–Liouville operators on graphs; eigenvalue asymptotics; Riesz-basicity of eigenfunctions; inverse problem; uniqueness theorem;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:358 / 378
页数:20
相关论文
共 58 条
  • [1] Kuchment P.(2004)Quantum graphs. I. Some basic structures Waves Random Media 14 S107-S128
  • [2] Savchuk A. M.(1999)Sturm–Liouville operators with singular potentials Math. Notes 66 741-753
  • [3] Shkalikov A. A.(2001)On the eigenvalues and eigenfunctions of the Sturm–Liouville operator with a singular potential Math. Notes 69 245-252
  • [4] Savchuk A. M.(2001)Trace formula for Sturm–Liouville operators with singular potentials Math. Notes 69 387-400
  • [5] Savchuk A. M.(2003)Characterization of the spectrum of Schrödinger operators with periodic distributions International Mathematics Research Notices 2003 2019-2031
  • [6] Shkalikov A. A.(2003)Inverse spectral problems for Sturm–Liouville operators with singular potentials Inverse Problems 19 665-684
  • [7] Korotyaev E.(2004)Transformation operators for Sturm–Liouville operators with singular potentials Math. Phys. Anal. Geom. 7 119-149
  • [8] Hryniv R. O.(2004)Inverse spectral problems for Sturm–Liouville operators with singular potentials. II. Reconstruction by two spectra North-Holland Mathematics Studies 197 97-114
  • [9] Mykytyuk Y. V.(2004)Half-inverse spectral problems for Sturm–Liouville operators with singular potentials Inverse problems 20 1423-1444
  • [10] Hryniv R. O.(2005)Inverse problem for Sturm–Liouville operators with distribution potentials: Reconstruction from two spectra Russ. J. Math. Phys. 12 507-514