Prediction of lung cancer using gene expression and deep learning with KL divergence gene selection

被引:0
作者
Suli Liu
Wu Yao
机构
[1] Zhengzhou University,College of Public Health
来源
BMC Bioinformatics | / 23卷
关键词
KL divergence; Gene selection; Imbalanced data; Focal loss; Deep learning; Lung cancer prediction;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 42 条
  • [1] Xiao Y(2018)A deep learning-based multi-model ensemble method for cancer prediction Comput Methods Programs Biomed 153 1-9
  • [2] Wu J(2021)Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries CA Cancer J Clin 71 209-249
  • [3] Lin Z(2011)Hallmarks of cancer: the next generation Cell 144 646-674
  • [4] Zhao X(2018)Lung cancer prediction using machine learning and advanced imaging techniques Transl Lung Cancer Res 7 304-312
  • [5] Sung H(2020)The biology of lung cancer: development of more effective methods for prevention, diagnosis, and treatment Clin Chest Med 41 25-38
  • [6] Ferlay J(2018)Applications of support vector machine (SVM) learning in cancer genomics Cancer Genomics Proteomics 15 41-51
  • [7] Siegel RL(1992)An introduction to kernel and nearest-neighbor nonparametric regression Am Stat 46 175-185
  • [8] Laversanne M(2020)The application of deep learning in cancer prognosis prediction Cancers (Basel) 12 603-117
  • [9] Soerjomataram I(2015)Deep learning in neural networks: an overview Neural Netw 61 85-874
  • [10] Jemal A(2006)An introduction to ROC analysis Pattern Recogn Lett 27 861-215