Saturation Classes for Max-Product Neural Network Operators Activated by Sigmoidal Functions

被引:0
作者
Danilo Costarelli
Gianluca Vinti
机构
[1] University of Perugia,Department of Mathematics and Computer Science
来源
Results in Mathematics | 2017年 / 72卷
关键词
Sigmoidal functions; neural networks operators; saturation result; inverse result; Favard classes; 41A25; 41A05; 41A30; 47A58;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we obtain a saturation result for the neural network (NN) operators of the max-product type. In particular, we show that any non-constant, continuous function on the interval [0, 1] cannot be approximated by the above operators Fn(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F^{(M)}_n$$\end{document}, n∈N+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in \mathbb {N}^+$$\end{document}, by a rate of convergence higher than 1 / n. Moreover, since we know that any Lipschitz function f can be approximated by the NN operators with an order of approximation of 1 / n, here we are able to prove a local inverse result, in order to provide a characterization of the saturation (Favard) classes.
引用
收藏
页码:1555 / 1569
页数:14
相关论文
共 81 条
[1]  
Anastassiou GA(2010)Approximation by a nonlinear Cardaliaguet-Euvrard neural network operator of max-product kind J. Comput. Anal. Appl. 12 396-406
[2]  
Coroianu L(2011)Nonlinear integral operators with homogeneous kernels: Pointwise approximation theorems Appl. Anal. 90 463-474
[3]  
Gal SG(1993)Universal approximation bounds for superpositions of a sigmoidal function IEEE Trans. Inf. Theory 39 930-945
[4]  
Bardaro C(2009)The approximation operators with sigmoidal functions Comput. Math. Appl. 58 758-765
[5]  
Karsli H(2012)The construction and approximation of a class of neural networks operators with ramp functions J. Comput. Anal. Appl. 14 101-112
[6]  
Vinti G(2016)Scattered data approximation by neural networks operators Neurocomputing 190 237-242
[7]  
Barron AR(2013)Image classification based on effective extreme learning machine Neurocomputing 102 90-97
[8]  
Cao F(2010)Approximation with neural networks activated by ramp sigmoids J. Approx. Theory 162 1450-1465
[9]  
Chen Z(2015)Enhancement of thermographic images as tool for structural analysis in earthquake engineering NDT E Int. 70 60-72
[10]  
Cao F(2015)Applications of sampling Kantorovich operators to thermographic images for seismic engineering J. Comput. Anal. Appl. 19 602-617