Complete autoencoders for classification with missing values

被引:0
作者
Adrián Sánchez-Morales
José-Luis Sancho-Gómez
Aníbal R. Figueiras-Vidal
机构
[1] Universidad Politécnica de Cartagena,Departamento de Tecnologías de la Información y las Comunicaciones
[2] Universidad Carlos III de Madrid,Departamento de Teoría de la Señal y Comunicaciones
来源
Neural Computing and Applications | 2021年 / 33卷
关键词
Missing data; Complete deep learners; Autoencoding; Multitask learning;
D O I
暂无
中图分类号
学科分类号
摘要
It has been demonstrated that modified denoising stacking autoencoders (MSDAEs) serve to implement high-performance missing value imputation schemes. On the other hand, complete MSDAE (CMSDAE) classifiers, which extend their inputs with target estimates from an auxiliary classifier and are layer by layer trained to recover both the observation and the target estimates, offer classification results that are better than those provided by MSDAEs. As a consequence, investigating whether CMSDAEs can improve the MSDAEs imputation processes has an obvious practical importance. In this correspondence, two types of imputation mechanisms with CMSDAEs are considered. The first is a direct procedure in which the CMSDAE output is just the target. The second mechanism is suggested by the presence of the targets in the vectors to be autoencoded, and it uses the well-known multitask learning (MTL) ideas, including the observations as a secondary task. Experimental results show that these CMSDAE structures increase the quality of the missing value imputations, in particular the MTL versions. They give the best result in 5 out of 6 missing value problems.
引用
收藏
页码:1951 / 1957
页数:6
相关论文
共 40 条
[1]  
Vincent P(2010)Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion J Mach Learn Res 11 3371-3408
[2]  
Larochelle H(2013)Representation learning: a review and new perspectives IEEE Trans Pattern Anal Mach Intell 35 3371-3408
[3]  
Lajoie I(2010)Reconstruction and recognition of face and digit images using autoencoders Neural Comput Appl 19 1069-1079
[4]  
Bengio Y(2019)Robust feature extraction and uncertainty estimation based on attractor dynamics in cyclic deep denoising autoencoder Neural Comput Appl 31 7989-8002
[5]  
Manzagol PA(2018)On building ensembles of stacked denoising auto-encoding classifiers and their further improvement Inf Fusion 39 41-52
[6]  
Bengio Y(2019)Exploiting label information to improve auto-encoding based classifiers Neurocomputing 27 1878-1887
[7]  
Courville A(2018)Stacked denoising tensor auto-encoder for action recognition with spatiotemporal corruptions IEEE Trans Image Process 354 7444-7462
[8]  
Vincent P(2017)Stable Kalman filter and neural network for the chaotic systems identification J Frankl Inst 28 41-75
[9]  
Tan CC(2019)Improving deep learning performance with missing values via deletion and compensation Neural Comput Appl 11 3269-3311
[10]  
Eswaran C(1997)Multitask learning Mach Learn 40 1333-1341