Power bounded weighted composition operators and power bounded below composition operators

被引:0
|
作者
Hamzeh Keshavarzi
机构
[1] Shiraz University,Department of Mathematics, College of Sciences
来源
Collectanea Mathematica | 2020年 / 71卷
关键词
Power bounded operators; Weighted composition operators; Strongly pseudoconvex bounded domains; Power bounded below operators; Weighted Dirichlet space; Primary 47B33; Secondary 47B38; 32A37;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we characterize power bounded weighted composition operators on weighted Bergman spaces of strongly pseudoconvex bounded domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document}. Also, we introduce the notion of power bounded below operators, then, for α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}, we characterize power bounded below composition operators on Dα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}_\alpha $$\end{document}, the weighted Dirichlet space on the unit disk of the complex plane.
引用
收藏
页码:205 / 221
页数:16
相关论文
共 50 条