Interactive topic modeling

被引:0
|
作者
Yuening Hu
Jordan Boyd-Graber
Brianna Satinoff
Alison Smith
机构
[1] University of Maryland,Computer Science
[2] University of Maryland,iSchool and UMIACS
来源
Machine Learning | 2014年 / 95卷
关键词
Topic models; Latent Dirichlet Allocation; Feedback; Interactive topic modeling; Online learning; Gibbs sampling;
D O I
暂无
中图分类号
学科分类号
摘要
Topic models are a useful and ubiquitous tool for understanding large corpora. However, topic models are not perfect, and for many users in computational social science, digital humanities, and information studies—who are not machine learning experts—existing models and frameworks are often a “take it or leave it” proposition. This paper presents a mechanism for giving users a voice by encoding users’ feedback to topic models as correlations between words into a topic model. This framework, interactive topic modeling (itm), allows untrained users to encode their feedback easily and iteratively into the topic models. Because latency in interactive systems is crucial, we develop more efficient inference algorithms for tree-based topic models. We validate the framework both with simulated and real users.
引用
收藏
页码:423 / 469
页数:46
相关论文
共 50 条
  • [1] Interactive topic modeling
    Hu, Yuening
    Boyd-Graber, Jordan
    Satinoff, Brianna
    Smith, Alison
    MACHINE LEARNING, 2014, 95 (03) : 423 - 469
  • [2] ArchiText: Interactive Hierarchical Topic Modeling
    Kim, Hannah
    Drake, Barry
    Endert, Alex
    Park, Haesun
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (09) : 3644 - 3655
  • [3] Interactive Topic Modeling for the Broadcasting Media
    Ham, Laura
    Leiva, Luis A.
    PROCEEDINGS OF THE XXIII INTERNATIONAL CONFERENCE ON HUMAN-COMPUTER INTERACTION, INTERACCION 2023, 2023,
  • [4] Modeling Topic Evolution to Steer Interactive Information Search
    Adhav, Harshal
    Singh, Vikram
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2021, 2024, 13102 : 586 - 596
  • [5] Interactive Topic Modeling for aiding Qualitative Content Analysis
    Bakharia, Aneesha
    Bruza, Peter
    Watters, Jim
    Narayan, Bhuva
    Sitbon, Laurianne
    PROCEEDINGS OF THE 2016 ACM CONFERENCE ON HUMAN INFORMATION INTERACTION AND RETRIEVAL (CHIIR'16), 2016, : 213 - 222
  • [6] Online Subset Topic Modeling for Interactive Documents Exploration
    Li, Linwei
    Wu, Yaobo
    Ke, Yixiong
    Liu, Chaoying
    Jing, Yinan
    He, Zhenying
    Wang, Xiaoyang Sean
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2018, PT I, 2018, 10827 : 916 - 923
  • [7] ITMViz: Interactive Topic Modeling for Source Code Analysis
    Saeidi, Amir M.
    Hage, Jurriaan
    Khadka, Ravi
    Jansen, Slinger
    2015 IEEE 23RD INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION ICPC 2015, 2015, : 295 - 298
  • [8] Interactive Assigning of Conference Sessions with Visualization and Topic Modeling
    Han, Yun
    Wang, Zhenhuang
    Chen, Siming
    Li, Guozheng
    Zhang, Xiaolong
    Yuan, Xiaoru
    2020 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2020, : 236 - 240
  • [9] iVisClustering: An Interactive Visual Document Clustering via Topic Modeling
    Lee, Hanseung
    Kihm, Jaeyeon
    Choo, Jaegul
    Stasko, John
    Park, Haesun
    COMPUTER GRAPHICS FORUM, 2012, 31 (03) : 1155 - 1164
  • [10] Multilingual Anchoring: Interactive Topic Modeling and Alignment Across Languages
    Yuan, Michelle
    Van Durme, Benjamin
    Boyd-Graber, Jordan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31