Existence of periodic solutions for a class of (ϕ1,ϕ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\phi _{1},\phi _{2})$\end{document}-Laplacian difference system with asymptotically (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-linear conditions

被引:0
作者
Hai-yun Deng
Xiao-yan Lin
Yu-bo He
机构
[1] Huaihua University,School of Mathematics and Computation Science
关键词
-Laplacian system; Periodic solutions; Asymptotically ; -linear condition; Mountain pass theorem; 37J45; 58E50; 39A23;
D O I
10.1186/s13661-024-01868-w
中图分类号
学科分类号
摘要
In this paper, we consider a (ϕ1,ϕ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\phi _{1},\phi _{2})$\end{document}-Laplacian system as follows: {Δϕ1(Δu(t−1))+∇uF(t,u(t),v(t))=0,Δϕ2(Δv(t−1))+∇vF(t,u(t),v(t))=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{aligned} \textstyle\begin{cases} \Delta \phi _{1} (\Delta u(t-1) )+\nabla _{u} F(t,u(t),v(t))=0, \\ \Delta \phi _{2} (\Delta v(t-1) )+\nabla _{v} F(t,u(t),v(t))=0, \end{cases}\displaystyle \end{aligned}$$ \end{document} where F(t,u(t),v(t))=−K(t,u(t),v(t))+W(t,u(t),v(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F(t,u(t),v(t))=-K(t,u(t),v(t))+W(t,u(t),v(t))$\end{document} is T-periodic in t. By using the mountain pass theorem, we obtain that the (ϕ1,ϕ2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\phi _{1},\phi _{2})$\end{document}-Laplacian system has at least one periodic solution if W is asymptotically (p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(p,q)$\end{document}-linear at infinity. Our results improve and extend some known works.
引用
收藏
相关论文
共 55 条
  • [1] Mawhin J.(2012)Periodic solutions of second order nonlinear difference systems with Nonlinear Anal. 75 4672-4687
  • [2] Mawhin J.(2013)-Laplacian: a variational approach Discrete Contin. Dyn. Syst. 6 1065-1076
  • [3] Paca D.(2011)Periodic solutions of second order Lagrangian difference systems with bounded or singular Anal. Appl. 9 201-223
  • [4] Li Y.K.(2011)-Laplacian and periodic potential Nonlinear Anal. 74 5215-5221
  • [5] Zhang T.W.(2012)Periodic solutions of second-order differential inclusions systems with J. Appl. Math. Comput. 40 607-625
  • [6] Yang X.Y.(2011)-Laplacian Adv. Differ. Equ. 2011 417-430
  • [7] Chen H.B.(2011)Infinitely many periodic solutions for second-order J. Appl. Math. Comput. 2011 1281-1302
  • [8] He X.(2012)-Laplacian differential systems J. Appl. Math. 2012 3646-3655
  • [9] Chen P.(2013)Periodic solutions for a nonlinear Adv. Differ. Equ. 2013 1617-1634
  • [10] Li C.(2010)-Laplacian dynamical system with impulsive effects Comput. Math. Appl. 59 1524-1534