Stability of a mixed additive and cubic functional equation in several variables in non-Archimedean spaces

被引:0
作者
A. Ebadian
S. Zolfaghari
机构
[1] Department of Mathematics, Payame Noor University, Tehran
[2] Department of Mathematics, Urmia University, Urmia
关键词
Additive function; Cubic function; Hyers-Ulam-Rassias stability; Mixed functional equation; Non-Archimedean space; p-adic field;
D O I
10.1007/s11565-012-0152-x
中图分类号
学科分类号
摘要
Consider the functional equation 1(f) = 2 (f) in a certain general setting. A function g is an approximate solution of, if 1 (g) and 2 (g) and are close in some sense. The Ulam stability problem asks whether or not there is a true solution o, near g. In this paper, we achieve the general solution and the stability of the following functional equation, for all x i (i = 1,2, . . ., n), in non-Archimedean spaces. © 2012 Università degli Studi di Ferrara.
引用
收藏
页码:291 / 306
页数:15
相关论文
共 29 条
  • [1] Aoki T., On the stability of the linear transformationin Banach spaces, J. Math. Soc. Japan, 2, pp. 64-66, (1950)
  • [2] Bourgin D.G., Classes of transformations and bordering transformations, Bull. AMS, 57, pp. 223-237, (1951)
  • [3] Cholewa P.W., Remarks on the stability of functional equations, Aequationes Math., 27, pp. 76-86, (1984)
  • [4] Czerwik S., Functional Equations and Inequalities in Several Variables, (2002)
  • [5] Eshaghi Gordji M., Ebadian A., Zolfaghari S., Stability of a functional equation deriving from cubic and quartic functions, Abstr. Appl. Anal. 2008, (2008)
  • [6] Eshaghi Gordji M., Bavand-Savadkouhi M., Rassias J.M., Zolfaghari S., Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces, Abstr. Appl. Anal. 2009, (2009)
  • [7] Eshaghi Gordji M., Bavand Savadkouhi M., Stability of cubic and quartic functional equations in non-Archimedean spaces, Acta Appl. Math., 110, pp. 1321-1329, (2010)
  • [8] Eshaghi Gordji M., Bavand Savadkouhi M., Stability of a mixed type cubic-uartic functional equation in non-Archimedean spaces, Applied Mathematics-Letters, 23, 10, pp. 1198-1202, (2010)
  • [9] Eshaghi M., Moslehian M.S., Kaboli S., Zolfaghari S., Et al., Stability of a mixed type additive, quadratic, cubic and quartic functional equation, Nonlinear Analysis and Variational Problems, pp. 65-80, (2009)
  • [10] Gajda Z., On stability of additive mappings, Internat. J. Math. Math. Sci., 14, pp. 431-434, (1991)