Lorentzian length spaces

被引:0
|
作者
Michael Kunzinger
Clemens Sämann
机构
[1] University of Vienna,Faculty of Mathematics
来源
Annals of Global Analysis and Geometry | 2018年 / 54卷
关键词
Length spaces; Lorentzian length spaces; Causality theory; Synthetic curvature bounds; Triangle comparison; Metric geometry; 53C23; 53C50; 53B30; 53C80;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce an analogue of the theory of length spaces into the setting of Lorentzian geometry and causality theory. The rôle of the metric is taken over by the time separation function, in terms of which all basic notions are formulated. In this way, we recover many fundamental results in greater generality, while at the same time clarifying the minimal requirements for and the interdependence of the basic building blocks of the theory. A main focus of this work is the introduction of synthetic curvature bounds, akin to the theory of Alexandrov and CAT(k)-spaces, based on triangle comparison. Applications include Lorentzian manifolds with metrics of low regularity, closed cone structures, and certain approaches to quantum gravity.
引用
收藏
页码:399 / 447
页数:48
相关论文
共 50 条
  • [1] Lorentzian length spaces
    Kunzinger, Michael
    Saemann, Clemens
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 54 (03) : 399 - 447
  • [2] Inextendibility of spacetimes and Lorentzian length spaces
    James D. E. Grant
    Michael Kunzinger
    Clemens Sämann
    Annals of Global Analysis and Geometry, 2019, 55 : 133 - 147
  • [3] Inextendibility of spacetimes and Lorentzian length spaces
    Grant, James D. E.
    Kunzinger, Michael
    Saemann, Clemens
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 55 (01) : 133 - 147
  • [5] Generalized products and Lorentzian length spaces
    Soultanis, Elefterios
    LETTERS IN MATHEMATICAL PHYSICS, 2025, 115 (01)
  • [6] ALEXANDROV'S PATCHWORK AND THE BONNET-MYERS THEOREM FOR LORENTZIAN LENGTH SPACES
    Beran, Tobias
    Napper, Lewis
    Rott, Felix
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, : 2713 - 2743
  • [7] On conformal Lorentzian length spaces
    Ebrahimi, Neda
    Vatandoost, Mehdi
    Pourkhandani, Rahimeh
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (06)
  • [8] On conformal Lorentzian length spaces
    Neda Ebrahimi
    Mehdi Vatandoost
    Rahimeh Pourkhandani
    Analysis and Mathematical Physics, 2023, 13
  • [9] On the causal hierarchy of Lorentzian length spaces
    Hau, Luis Ake
    Cabrera Pacheco, Armando J.
    Solis, Didier A.
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (21)
  • [10] On the space of compact diamonds of Lorentzian length spaces
    Barrera, Waldemar
    de Oca, Luis Montes
    Solis, Didier A.
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (06)