In this paper, we deal with the following class of fractional (p, q)-Laplacian Kirchhoff type problem: 1+[u]s,pp(-Δ)psu+1+[u]s,qq(-Δ)qsu+V(εx)(|u|p-2u+|u|q-2u)=f(u)inRN,u∈Ws,p(RN)∩Ws,q(RN),u>0inRN,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} \left( 1+[u]_{s,p}^{p}\right) (-\Delta )_{p}^{s}u+ \left( 1+[u]^{q}_{s, q}\right) (-\Delta )_{q}^{s}u + V(\varepsilon x) (|u|^{p-2}u + |u|^{q-2}u)= f(u) &{} \text{ in } \mathbb {R}^{N}, \\ u\in W^{s, p}(\mathbb {R}^{N})\cap W^{s,q}(\mathbb {R}^{N}), \quad u>0 \text{ in } \mathbb {R}^{N}, \end{array} \right. \end{aligned}$$\end{document}where ε>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon >0$$\end{document}, s∈(0,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$s\in (0, 1)$$\end{document}, 1<p<q<Ns<2q\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1<p<q<\frac{N}{s}<2q$$\end{document}, (-Δ)ts\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(-\Delta )_{t}^{s}$$\end{document}, with t∈{p,q}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t\in \{p, q\}$$\end{document}, is the fractional t-Laplacian operator, V:RN→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V:\mathbb {R}^{N}\rightarrow \mathbb {R}$$\end{document} is a positive continuous potential such that inf∂ΛV>infΛV\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\inf _{\partial \Lambda }V>\inf _{\Lambda } V$$\end{document} for some bounded open set Λ⊂RN\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Lambda \subset \mathbb {R}^{N}$$\end{document}, and f:R→R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f:\mathbb {R}\rightarrow \mathbb {R}$$\end{document} is a superlinear continuous nonlinearity with subcritical growth at infinity. By combining the method of Nehari manifold, a penalization technique, and the Lusternik–Schnirelman category theory, we study the multiplicity and concentration properties of solutions for the above problem when ε→0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varepsilon \rightarrow 0$$\end{document}.