Mitochondrial genome of the entomophthoroid fungus Conidiobolus heterosporus provides insights into evolution of basal fungi

被引:0
|
作者
Yong Nie
Lin Wang
Yue Cai
Wei Tao
Yong-Jie Zhang
Bo Huang
机构
[1] Anhui Agricultural University,Anhui Provincial Key Laboratory of Microbial Pest Control
[2] Anhui University of Technology,School of Civil Engineering and Architecture
[3] Shanxi University,School of Life Science
[4] Hefei University,Department of Biological and Environmental Engineering
[5] Anhui Agricultural University,School of Forestry and Landscape Architecture
来源
关键词
Mitochondrial genome; Basal fungi; Phylogeny; Evolution;
D O I
暂无
中图分类号
学科分类号
摘要
Entomophthoroid fungi represent an ecologically important group of fungal pathogens on insects. Here, the whole mitogenome of Conidiobolus heterosporus, one of the entomophthoroid fungi, was described and compared to those early branching fungi with available mitogenomes. The 53,364-bp circular mitogenome of C. heterosporus contained two rRNA genes, 14 standard protein-coding genes, 26 tRNA genes, and three free-standing ORFs. Thirty introns interrupted nine mitochondrial genes. Phylogenetic analysis based on mitochondrion-encoded proteins revealed that C. heterosporus was most close to Zancudomyces culisetae in the Zoopagomycota of basal fungi. Comparison on mitogenomes of 23 basal fungi revealed great variabilities in terms of mitogenome conformation (circular or linear), genetic code (codes 1, 4, or 16), AT contents (53.3–85.5%), etc. These mitogenomes varied from 12.0 to 97.3 kb in sizes, mainly due to different numbers of genes and introns. They showed frequent DNA rearrangement events and a high variability of gene order, although high synteny and conserved gene order were also present between closely related species. By reporting the first mitogenome in Entomophthoromycotina and the second in Zoopagomycota, this study greatly enhanced our understanding on evolution of basal fungi.
引用
收藏
页码:1379 / 1391
页数:12
相关论文
共 50 条
  • [31] African Arowana Genome Provides Insights on Ancient Teleost Evolution
    Hao, Shijie
    Han, Kai
    Meng, Lingfeng
    Huang, Xiaoyun
    Cao, Wei
    Shi, Chengcheng
    Zhang, Mengqi
    Wang, Yilin
    Liu, Qun
    Zhang, Yaolei
    Sun, Haixi
    Seim, Inge
    Xu, Xun
    Liu, Xin
    Fan, Guangyi
    ISCIENCE, 2020, 23 (11)
  • [32] The sacred lotus genome provides insights into the evolution of flowering plants
    Wang, Yun
    Fan, Guangyi
    Liu, Yiman
    Sun, Fengming
    Shi, Chengcheng
    Liu, Xin
    Peng, Jing
    Chen, Wenbin
    Huang, Xinfang
    Cheng, Shifeng
    Liu, Yuping
    Liang, Xinming
    Zhu, Honglian
    Bian, Chao
    Zhong, Lan
    Lv, Tian
    Dong, Hongxia
    Liu, Weiqing
    Zhong, Xiao
    Chen, Jing
    Quan, Zhiwu
    Wang, Zhihong
    Tan, Benzhong
    Lin, Chufa
    Mu, Feng
    Xu, Xun
    Ding, Yi
    Guo, An-Yuan
    Wang, Jun
    Ke, Weidong
    PLANT JOURNAL, 2013, 76 (04): : 557 - 567
  • [33] Elephant shark genome provides unique insights into gnathostome evolution
    Venkatesh, Byrappa
    Lee, Alison P.
    Ravi, Vydianathan
    Maurya, Ashish K.
    Lian, Michelle M.
    Swann, Jeremy B.
    Ohta, Yuko
    Flajnik, Martin F.
    Sutoh, Yoichi
    Kasahara, Masanori
    Hoon, Shawn
    Gangu, Vamshidhar
    Roy, Scott W.
    Irimia, Manuel
    Korzh, Vladimir
    Kondrychyn, Igor
    Lim, Zhi Wei
    Tay, Boon-Hui
    Tohari, Sumanty
    Kong, Kiat Whye
    Ho, Shufen
    Lorente-Galdos, Belen
    Quilez, Javier
    Marques-Bonet, Tomas
    Raney, Brian J.
    Ingham, Philip W.
    Tay, Alice
    Hillier, LaDeana W.
    Minx, Patrick
    Boehm, Thomas
    Wilson, Richard K.
    Brenner, Sydney
    Warren, Wesley C.
    NATURE, 2014, 505 (7482) : 174 - 179
  • [34] Comparative mitochondrial genome analysis provides new insights into the classification of Modiolinae
    Zhu, Yi
    Yan, Shaojing
    Ma, Peizhen
    Zhang, Yifei
    Zuo, Chenxia
    Ma, Xiaojie
    Zhang, Zhen
    MOLECULAR BIOLOGY REPORTS, 2024, 51 (01)
  • [35] Evolution of monoblepharidalean fungi based on complete mitochondrial genome sequences
    Bullerwell, CE
    Forget, L
    Lang, BF
    NUCLEIC ACIDS RESEARCH, 2003, 31 (06) : 1614 - 1623
  • [36] Evolution of the mitochondrial genome: protist connections to animals, fungi and plants
    Bullerwell, CE
    Gray, MW
    CURRENT OPINION IN MICROBIOLOGY, 2004, 7 (05) : 528 - 534
  • [37] The complete mitochondrial genome of Fusarium oxysporum:: Insights into fungal mitochondrial evolution
    Pantou, Malena P.
    Kouvelis, Vassili N.
    Typas, Milton A.
    GENE, 2008, 419 (1-2) : 7 - 15
  • [38] The caterpillar fungus, Ophiocordyceps sinensis, genome provides insights into highland adaptation of fungal pathogenicity
    En-Hua Xia
    Da-Rong Yang
    Jian-Jun Jiang
    Qun-Jie Zhang
    Yuan Liu
    Yun-Long Liu
    Yun Zhang
    Hai-Bin Zhang
    Cong Shi
    Yan Tong
    Changhoon Kim
    Hua Chen
    Yan-Qiong Peng
    Yue Yu
    Wei Zhang
    Evan E. Eichler
    Li-Zhi Gao
    Scientific Reports, 7
  • [39] The Medicinal Herb Panax notoginseng Genome Provides Insights into Ginsenoside Biosynthesis and Genome Evolution
    Zhang, Dan
    Li, Wei
    Xia, En-hua
    Zhang, Qun-jie
    Liu, Yuan
    Zhang, Yun
    Tong, Yan
    Zhao, Yuan
    Niu, Yong-chao
    Xu, Jia-huan
    Gao, Li-zhi
    MOLECULAR PLANT, 2017, 10 (06) : 903 - 907
  • [40] A comparative analysis of mitochondrial ORFs provides new insights on expansion of mitochondrial genome size in Arcidae
    Ning Zhang
    Yuanning Li
    Kenneth M. Halanych
    Lingfeng Kong
    Qi Li
    BMC Genomics, 23