Leibniz and Lie Algebra Structures for Nambu Algebra

被引:0
作者
Yuri L. Daletskii
Leon A. Takhtajan
机构
[1] National Technical University of Ukraine,
[2] Department of Mathematics,undefined
来源
Letters in Mathematical Physics | 1997年 / 39卷
关键词
Leibniz algebra; Nambu algebra; Lie algebra; homological and cohomological complexes; Jacobi identity.;
D O I
暂无
中图分类号
学科分类号
摘要
We canonically associate a Leibniz algebra with every Nambu algebra. We show how various homological and cohomological complexes for a Nambu algebra can be naturally obtained from its structure as a module over the Leibniz algebra. We also present a generalization of a classical Lie--Berezin construction for Nambu algebras and extend these results for Nambu superalgebras.
引用
收藏
页码:127 / 141
页数:14
相关论文
共 14 条
[1]  
Nambu Y.(1973)Generalized Hamiltonian dynamics Phys. Rev. D 7 2405-2412
[2]  
Takhtajan L.(1994)On foundation on the generalized Nambu mechanics Comm. Math. Phys. 160 295-315
[3]  
Loday J. L.(1993)Universal enveloping algebras of Leibniz algebras and (co)homology Math. Ann. 296 139-158
[4]  
Pirashvili T.(1995)A higher order analog on the Chevalley–Eilenberg complex and the deformation theory of St. Petersburg Math. J. 6 429-438
[5]  
Takhtajan L.(1996)-algebras Lett. Math. Phys. 36 117-126
[6]  
Chatterjee R.(1996)Dynamical symmetries and Nambu mechanics Lett. Math. Phys. 37 475-482
[7]  
Chatterjee R.(1996)Aspects of classical and quantum Nambu mechanics Lett. Math. Phys. 37 103-116
[8]  
Takhtajan L.(1996)Some remarks concerning Nambu mechanics Dopovidi NAN Ukraine 4 12-18
[9]  
Gautheron P.(1990)Inclusion of Nambu–Takhtajan algebra in formal differential geometry structure Soviet Math. Dokl. 40 422-426
[10]  
Daletskii Y.(undefined)On a variant of non-commutative differential geometry undefined undefined undefined-undefined