Toric Calabi-Yau threefolds as quantum integrable systems. ℛ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{R}} $$\end{document}-matrix and ℛTT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{R}}\mathcal{T}\mathcal{T} $$\end{document} relations

被引:0
作者
Hidetoshi Awata
Hiroaki Kanno
Andrei Mironov
Alexei Morozov
Andrey Morozov
Yusuke Ohkubo
Yegor Zenkevich
机构
[1] Nagoya University,Graduate School of Mathematics
[2] Nagoya University,KMI
[3] Lebedev Physics Institute,Theory Department
[4] ITEP,Laboratory of Quantum Topology
[5] Institute for Information Transmission Problems,undefined
[6] National Research Nuclear University MEPhI,undefined
[7] Chelyabinsk State University,undefined
[8] Institute for Nuclear Research,undefined
关键词
Conformal and W Symmetry; Supersymmetric gauge theory; Topological Field Theories; Topological Strings;
D O I
10.1007/JHEP10(2016)047
中图分类号
学科分类号
摘要
ℛ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{R}} $$\end{document}-matrix is explicitly constructed for simplest representations of the Ding-Iohara-Miki algebra. Calculation is straightforward and significantly simpler than the one through the universal ℛ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{R}} $$\end{document}-matrix used for a similar calculation in the Yangian case by A. Smirnov but less general. We investigate the interplay between the ℛ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{R}} $$\end{document}-matrix structure and the structure of DIM algebra intertwiners, i.e. of refined topological vertices and show that the ℛ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{R}} $$\end{document}-matrix is diagonalized by the action of the spectral duality belonging to the SL(2, ℤ) group of DIM algebra automorphisms. We also construct the T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{T} $$\end{document}-operators satisfying the ℛTT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{R}}\mathcal{T}\mathcal{T} $$\end{document} relations with the ℛ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{R}} $$\end{document}-matrix from refined amplitudes on resolved conifold. We thus show that topological string theories on the toric Calabi-Yau threefolds can be naturally interpreted as lattice integrable models. Integrals of motion for these systems are related to q-deformation of the reflection matrices of the Liouville/Toda theories.
引用
收藏
相关论文
共 234 条
[1]  
Seiberg N(1994)Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD Nucl. Phys. B 431 484-undefined
[2]  
Witten E(1995)Integrability and Seiberg-Witten exact solution Phys. Lett. B 355 466-undefined
[3]  
Gorsky A(1996)Supersymmetric Yang-Mills theory and integrable systems Nucl. Phys. B 460 299-undefined
[4]  
Krichever I(1996)Integrable structures in supersymmetric gauge and string theory Phys. Lett. B 367 91-undefined
[5]  
Marshakov A(1996)Integrable systems and supersymmetric gauge theory Nucl. Phys. B 459 97-undefined
[6]  
Mironov A(2012)Review of AdS/CFT Integrability: An Overview Lett. Math. Phys. 99 3-undefined
[7]  
Morozov A(1995)Electric-magnetic duality in supersymmetric nonAbelian gauge theories Nucl. Phys. B 435 129-undefined
[8]  
Donagi R(2009)Applications of the Superconformal Index for Protected Operators and q-Hypergeometric Identities to N = 1 Dual Theories Nucl. Phys. B 818 137-undefined
[9]  
Witten E(2010)Liouville Correlation Functions from Four-dimensional Gauge Theories Lett. Math. Phys. 91 167-undefined
[10]  
Martinec EJ(2009)A JHEP 11 002-undefined