Lagrangian and Hamiltonian formalisms for relativistic dynamics of a charged particle with dipole moment

被引:0
作者
A. Peletminskii
S. Peletminskii
机构
[1] National Science Centre Kharkov Institute of Physics and Technology,
[2] The Abdus Salam International Centre for Theoretical Physics,undefined
来源
The European Physical Journal C - Particles and Fields | 2005年 / 42卷
关键词
Dipole Moment; Charged Particle; Dirac Equation; Poisson Bracket; Gauge Field;
D O I
暂无
中图分类号
学科分类号
摘要
The Lagrangian and Hamiltonian formulations for the relativistic classical dynamics of a charged particle with dipole moment in the presence of an electromagnetic field are given. The differential conservation laws for the energy-momentum and angular momentum tensors of a field and particle are discussed. The Poisson brackets for basic dynamic variables, which form a closed algebra, are found. These Poisson brackets enable us to perform the canonical quantization of the Hamiltonian equations that leads to the Dirac wave equation in the case of spin 1/2. It is also shown that the classical limit of the squared Dirac equation results in equations of motion for a charged particle with dipole moment obtained from the Lagrangian formulation. The inclusion of gravitational field and non-Abelian gauge fields into the proposed formalism is discussed.
引用
收藏
页码:505 / 517
页数:12
相关论文
共 15 条
[1]  
Frenkel undefined(1926)undefined Z. Phys. 37 243-undefined
[2]  
Thomas undefined(1927)undefined Phil. Mag. 3 1-undefined
[3]  
Bargmann undefined(1959)undefined Phys. Rev. Lett. 2 435-undefined
[4]  
Cognola undefined(1981)undefined Phys. Lett. B 104 67-undefined
[5]  
Hanson undefined(1974)undefined Ann. Phys. 87 498-undefined
[6]  
Amorim undefined(1984)undefined J. Math. Phys. 25 874-undefined
[7]  
Itzykson undefined(1972)undefined Phys. Rev. D 5 2939-undefined
[8]  
Volkov undefined(1980)undefined Ser. Fiz. 44 1487-undefined
[9]  
Isayev undefined(1996)undefined 431 (1996) [Phys. Part. Nuclei 27 203-undefined
[10]  
Kibble undefined(1961)undefined J. Math. Phys. 2 212-undefined