Refinement of an inequality of P. L. Chebyshev

被引:0
作者
D. Dryanov
R. Fournier
机构
[1] Concordia University,Dept. of Math. and Stat.
[2] Université de Montréal,Départ. de Math. et de Stat.
来源
Acta Mathematica Hungarica | 2009年 / 122卷
关键词
Chebyshev inequality; Chebyshev polynomial; Visser’s inequality; 30A10; 41A17;
D O I
暂无
中图分类号
学科分类号
摘要
Let Pn denote the linear space of polynomials p(z:=Σk=0nak(p)zk of degree ≦ n with complex coefficients and let |p|[−1,1]: = maxx∈[−1,1]|p(x)| be the uniform norm of a polynomial p over the unit interval [−1, 1]. Let tn ∈ Pn be the nth Chebyshev polynomial. The inequality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{\left| p \right|_{\left[ { - 1,1} \right]} }} {{\left| {a_n (p)} \right|}} \geqq \frac{{\left| {t_n } \right|_{\left[ { - 1,1} \right]} }} {{\left| {a_n (t_n )} \right|}},p \in P_n $$\end{document} due to P. L. Chebyshev can be considered as an extremal property of the Chebyshev polynomial tn in Pn. The present note contains various extensions and improvements of the above inequality obtained by using complex analysis methods.
引用
收藏
页码:59 / 69
页数:10
相关论文
共 3 条
  • [1] Dryanov D.(2002)Bound preserving operators over classes of polynomials East J. Approx. 8 327-353
  • [2] Fournier R.(2004)Cases of equality for a class of bound preserving operators over Comput. Methods Funct. Theory 4 183-188
  • [3] Fournier R.(undefined)undefined undefined undefined undefined-undefined