Matrix Weighted Kolmogorov–Riesz’s Compactness Theorem

被引:0
作者
Shenyu Liu
Dongyong Yang
Ciqiang Zhuo
机构
[1] Xiamen University,School of Mathematical Sciences
[2] Hunan Normal University,Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics
来源
Frontiers of Mathematics | 2023年 / 18卷
关键词
Kolmogorov–Riesz theorem; matrix weight; totally bounded; metric measure space; variable exponent Lebesgue space; 46B50; 46E40; 42B35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, several versions of the Kolmogorov–Riesz compactness theorem in weighted Lebesgue spaces with matrix weights are obtained. In particular, when the matrix weight W is in the known Ap class, a characterization of totally bounded subsets in Lp(W) with p ∈ (1, ∞) is established.
引用
收藏
页码:1167 / 1189
页数:22
相关论文
共 62 条
[1]  
Aydın I(2020)The Kolmogorov–Riesz theorem and some compactness criterions of bounded subsets in weighted variable exponent amalgam and Sobolev spaces Collect. Math. 71 349-367
[2]  
Unal C(2017)Compactness criteria in weighted variable Lebesgue spaces Miskolc Math. Notes 18 95-101
[3]  
Bandaliyev R(2018)Relatively compact sets in variable-exponent Lebesgue spaces Banach J. Math. Anal. 2 331-346
[4]  
Bandaliyev R(1985)A commutator theorem and weighted BMO Trans. Amer. Math. Soc. 292 103-122
[5]  
Gorka P(2016)Compactness in quasi-Banach function spaces and applications to compact embeddings of Besov-type spaces Proc. Roy. Soc. Edinburgh Sect. A 146 905-927
[6]  
Bloom S(2022)Extrapolation for multilinear compact operators and applications Trans. Amer. Math. Soc. 375 5011-5070
[7]  
Caetano A(2001)Vector A Trans. Amer. Math. Soc. 353 1995-2002
[8]  
Gogatishvili A(2013) weights and a Hardy-Littlewood maximal function Ann. Acad. Sci. Fenn. Math. 38 91-113
[9]  
Opic B(2021)Weighted estimates for Beltrami equations Rev. Mat. Iberoam. 37 1513-1538
[10]  
Cao MM(2016)Weak endpoint bounds for matrix weights J. Geom. Anal. 26 2797-2830