Periodic orbits for the generalized Yang–Mills Hamiltonian system in dimension 6

被引:0
作者
Fatima Ezzahra Lembarki
Jaume Llibre
机构
[1] Universitat Autònoma de Barcelona,Departament de Matemàtiques
来源
Nonlinear Dynamics | 2014年 / 76卷
关键词
Periodic orbits; Yang–Mills; Averaging theory;
D O I
暂无
中图分类号
学科分类号
摘要
We apply the averaging theory to study a generalized Yang–Mills Hamiltonian system in dimension 6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6$$\end{document} with six parameters. We provide sufficient conditions on the six parameters of the system which guarantee the existence of continuous families of period orbits parameterized by the energy.
引用
收藏
页码:1807 / 1819
页数:12
相关论文
共 41 条
  • [1] Almeida M(1998)On the Ziglin–Yoshida analysis for some classes of homogeneous Hamiltonian systems Braz. J. Phys. 28 470-480
  • [2] Moreira I(1992)Existence of stable periodic orbits in the J. Phys. A 25 297-301
  • [3] Santos F(1984) potential: a semiclassical approach Astron. Astrophys. 141 383-388
  • [4] Biswas D(1994)Families of periodic orbits in a quartic potential Celest. Mech. Dyn. Astron. 60 249-271
  • [5] Azam M(1999)The structure of chaos in a potential without escapes J. Phys. A 32 5213-5232
  • [6] Lawande Q(2003)Destruction of islands of stability J. Phys. A 36 8639-8660
  • [7] Lawande S(1991)Non-convergence of formal integrals of motion Celest. Mech. Dynam. Astron. 51 227-250
  • [8] Caranicolas N(1995)The Lissajous transformation II. Normalization Celest. Mech. Dynam. Astron. 62 191-192
  • [9] Varvoglis H(2007)Comment on a paper by Kasperczuk. Celest. Mech. 58, 378 (1994) Bull. Braz. Math. Soc. 38 301-333
  • [10] Contopoulos G(1976)On the dynamics of mechanical systems with homogeneous polynomial potentials of degree 4 Phys. Rev. D 13 2739-2761