Regularity of the Speed of Biased Random Walk in a One-Dimensional Percolation Model

被引:0
作者
Nina Gantert
Matthias Meiners
Sebastian Müller
机构
[1] Fakultät für Mathematik Technische Universität München,Institut für Mathematik
[2] Universität Innsbruck,undefined
[3] Aix Marseille Université,undefined
[4] CNRS,undefined
[5] Centrale Marseille,undefined
[6] I2M,undefined
来源
Journal of Statistical Physics | 2018年 / 170卷
关键词
Biased random walk; Regularity of the speed; Invariance principle; Ladder graph; Percolation; 60K37; 82B43;
D O I
暂无
中图分类号
学科分类号
摘要
We consider biased random walks on the infinite cluster of a conditional bond percolation model on the infinite ladder graph. Axelson-Fisk and Häggström established for this model a phase transition for the asymptotic linear speed v¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\hbox {v}}$$\end{document} of the walk. Namely, there exists some critical value λc>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _{\hbox {c}}>0$$\end{document} such that v¯>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\hbox {v}}>0$$\end{document} if λ∈(0,λc)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in (0,\lambda _{\hbox {c}})$$\end{document} and v¯=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\hbox {v}}=0$$\end{document} if λ≥λc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \ge \lambda _{\hbox {c}}$$\end{document}. We show that the speed v¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\hbox {v}}$$\end{document} is continuous in λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} on (0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\infty )$$\end{document} and differentiable on (0,λc/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\lambda _{\hbox {c}}/2)$$\end{document}. Moreover, we characterize the derivative as a covariance. For the proof of the differentiability of v¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\hbox {v}}$$\end{document} on (0,λc/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\lambda _{\hbox {c}}/2)$$\end{document}, we require and prove a central limit theorem for the biased random walk. Additionally, we prove that the central limit theorem fails to hold for λ≥λc/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \ge \lambda _{\hbox {c}}/2$$\end{document}.
引用
收藏
页码:1123 / 1160
页数:37
相关论文
共 47 条
[1]  
Aïdékon E(2014)Speed of the biased random walk on a Galton–Watson tree Probab. Theory Relat. Fields 159 597-617
[2]  
Axelson-Fisk M(2009)Biased random walk in a one-dimensional percolation model Stoch. Process. Appl. 119 3395-3415
[3]  
Häggström O(2009)Conditional percolation on one-dimensional lattices Adv. Appl. Probab. 41 1102-1122
[4]  
Axelson-Fisk M(2008)A regeneration proof of the central limit theorem for uniformly ergodic Markov chains Electron. Commun. Probab. 13 85-98
[5]  
Häggström O(2013)Einstein relation for biased random walk on Galton-Watson trees Ann. Inst. Henri Poincaré Probab. Stat. 49 698-721
[6]  
Bednorz W(2014)Lyons–Pemantle–Peres monotonicity problem for high biases Commun. Pure Appl. Math. 67 519-530
[7]  
Łatuszyński K(2007)Quenched invariance principle for simple random walk on percolation clusters Probab. Theory Relat. Fields 137 83-120
[8]  
Latała R(2003)The speed of biased random walk on percolation clusters Probab. Theory Relat. Fields 126 221-242
[9]  
Ben Arous G(1989)An invariance principle for reversible Markov processes. Applications to random motions in random environments J. Stat. Phys. 55 787-855
[10]  
Hu Y(2010)On the speed of biased random walk in translation invariant percolation ALEA Lat. Am. J. Probab. Math. Stat. 7 19-40