An h-p Version of the Continuous Petrov–Galerkin Method for Nonlinear Delay Differential Equations

被引:0
作者
Tingting Meng
Lijun Yi
机构
[1] Shanghai Normal University,Department of Mathematics
来源
Journal of Scientific Computing | 2018年 / 74卷
关键词
Nonlinear delay differential equations; -; version; Continuous Petrov–Galerkin method; Error analysis; 65L60; 65L05; 65L70;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate an h-p version of the continuous Petrov–Galerkin time stepping method for nonlinear delay differential equations with vanishing delays. We derive a priori error estimates in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document}-, H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}$$\end{document}- and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}-norm that are completely explicit with respect to the local time steps, the local polynomial degrees, and the local regularity of the exact solution. Moreover, we show that the h-p version continuous Petrov–Galerkin scheme based on geometrically refined time steps and on linearly increasing approximation orders achieves exponential rates of convergence for solutions with start-up singularities. The theoretical results are illustrated by some numerical experiments.
引用
收藏
页码:1091 / 1114
页数:23
相关论文
共 69 条
[31]  
Loss M(undefined)A note on a norm-preserving continuous Galerkin time stepping scheme undefined undefined undefined-undefined
[32]  
Zelik S(undefined)Local superconvergence of continuous Galerkin solutions for delay differential equations of pantograph type undefined undefined undefined-undefined
[33]  
Ito K(undefined)An undefined undefined undefined-undefined
[34]  
Tran HT(undefined)-error estimate for the undefined undefined undefined-undefined
[35]  
Manitius A(undefined)- undefined undefined undefined-undefined
[36]  
Johnson C(undefined) version continuous Petrov–Galerkin method for nonlinear initial value problems undefined undefined undefined-undefined
[37]  
Nävert U(undefined)An undefined undefined undefined-undefined
[38]  
Pitkäranta J(undefined)- undefined undefined undefined-undefined
[39]  
Li D(undefined) version of the continuous Petrov–Galerkin finite element method for Volterra integro-differential equations with smooth and nonsmooth kernels undefined undefined undefined-undefined
[40]  
Zhang C(undefined)Legendre-Gauss-Lobatto spectral collocation method for nonlinear delay differential equations undefined undefined undefined-undefined