An h-p Version of the Continuous Petrov–Galerkin Method for Nonlinear Delay Differential Equations

被引:0
作者
Tingting Meng
Lijun Yi
机构
[1] Shanghai Normal University,Department of Mathematics
来源
Journal of Scientific Computing | 2018年 / 74卷
关键词
Nonlinear delay differential equations; -; version; Continuous Petrov–Galerkin method; Error analysis; 65L60; 65L05; 65L70;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate an h-p version of the continuous Petrov–Galerkin time stepping method for nonlinear delay differential equations with vanishing delays. We derive a priori error estimates in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document}-, H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{1}$$\end{document}- and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}-norm that are completely explicit with respect to the local time steps, the local polynomial degrees, and the local regularity of the exact solution. Moreover, we show that the h-p version continuous Petrov–Galerkin scheme based on geometrically refined time steps and on linearly increasing approximation orders achieves exponential rates of convergence for solutions with start-up singularities. The theoretical results are illustrated by some numerical experiments.
引用
收藏
页码:1091 / 1114
页数:23
相关论文
共 69 条
[1]  
Ali I(2009)A spectral method for pantograph-type delay differential equations and its convergence analysis J. Comput. Math. 27 254-265
[2]  
Brunner H(1994)The SIAM Rev. 36 578-632
[3]  
Tang T(1984) and J. Comput. Appl. Math. 10 275-283
[4]  
Babuška I(1985)- Numer. Math. 47 301-316
[5]  
Suri M(2010) versions of the finite element method, basic principles and properties SIAM J. Numer. Anal. 48 1944-1967
[6]  
Bellen A(2006)One-step collocation for delay differential equations SIAM J. Numer. Anal. 44 224-245
[7]  
Bellen A(2007)Numerical solution of delay differential equations by uniform corrections to an implicit Runge–Kutta method Appl. Math. Comput. 186 1488-1496
[8]  
Zennaro M(2000)Discontinuous Galerkin methods for delay differential equations of pantograph type SIAM J. Sci. Comput. 22 1593-1609
[9]  
Brunner H(1978)-discontinuous Galerkin time-stepping for Volterra integrodifferential equations Comput. Methods Appl. Mech. Eng. 14 39-64
[10]  
Huang Q(2013)The Galerkin continuous finite element method for delay-differential equation with a variable term SIAM J. Sci. Comput. 35 A1604-A1620