Subdomain separability in global optimization

被引:0
作者
Jens Deussen
Uwe Naumann
机构
[1] RWTH Aachen University,Informatik 12: Software and Tools for Computational Engineering
来源
Journal of Global Optimization | 2023年 / 86卷
关键词
Global optimization; Algorithmic differentiation; Branch and bound; Interval adjoints; Search space reduction; Separable functions; 65G30; 90C26;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a generalization of separability for global optimization, presented in the context of a simple branch and bound method. Our results apply to continuously differentiable objective functions implemented as computer programs. A significant search space reduction can be expected to yield an acceleration of any global optimization method. We show how to utilize interval derivatives calculated by adjoint algorithmic differentiation to examine the monotonicity of the objective with respect to so called structural separators and how to verify the latter automatically.
引用
收藏
页码:573 / 588
页数:15
相关论文
共 27 条
  • [1] Falk J(1969)An algorithm for separable nonconvex programming problems Manag. Sci. 15 550-569
  • [2] Soland R(2013)On interval branch-and-bound for additively separable functions with common variables J. Glob. Optim. 56 1101-1121
  • [3] Berenguel JL(2013)A literature survey of benchmark functions for global optimization problems Int. J. Math. Model. Numer. Optim. 4 150-194
  • [4] Casado LG(1990)A parallel algorithm for partially separable non-convex global minimization Ann. Oper. Res. 25 101-118
  • [5] García I(1996)Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey of some theoretical and practical aspects of genetic algorithms BioSystems 39 263-278
  • [6] Hendrix EMT(2012)Algorithmic differentiation techniques for global optimization in the COCONUT environment Optim. Methods Softw. 27 359-372
  • [7] Messine F(2005)Interval analysis on directed acyclic graphs for global optimization J. Glob. Optim. 33 541-562
  • [8] Jamil M(1990)Experiments in nonconvex optimization: stochastic approximation with function smoothing and simulated annealing Neural Netw. 3 467-483
  • [9] Yang X(2009)DAG reversal is NP-complete J. Discrete Algorithms 7 402-410
  • [10] Phillips AT(1976)Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems Math. Program. 10 147-175