Orbital instability of standing waves for the quadratic–cubic Klein-Gordon–Schrödinger system

被引:0
作者
Fábio Natali
Ademir Pastor
机构
[1] Universidade Estadual de Maringá,Departamento de Matemática
[2] IMECC-UNICAMP,undefined
来源
Zeitschrift für angewandte Mathematik und Physik | 2015年 / 66卷
关键词
Primary 76B25; 35Q51; 35Q53; Klein-Gordon–Schrödinger system; Periodic waves; Solitary waves; Orbital stability;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Klein-Gordon–Schrödinger system with quadratic and cubic interactions. Smooth curves of periodic- and solitary-wave solutions are obtained via the implicit function theorem. Orbital instability of such waves is then established.
引用
收藏
页码:1341 / 1354
页数:13
相关论文
共 50 条
[1]   Orbital instability of standing waves for the quadratic-cubic Klein-Gordon-Schrodinger system [J].
Natali, Fabio ;
Pastor, Ademir .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04) :1341-1354
[2]   Cnoidal waves for the cubic nonlinear Klein-Gordon and Schrödinger equations [J].
de Loreno, Guilherme ;
Moraes, Gabriel E. Bittencourt ;
Natali, Fabio ;
Pastor, Ademir .
EUROPEAN JOURNAL OF MATHEMATICS, 2025, 11 (02)
[3]   Orbital instability of standing waves for the Klein-Gordon-Schrodinger system with quadratic-cubic nonlinearity [J].
Zhu, Qing ;
Zhou, Zhan ;
Luo, Tingjian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 456 (02) :1329-1346
[4]   Orbital stability of periodic standing waves for the logarithmic Klein-Gordon equation [J].
Natali, Fabio ;
Cardoso, Eleomar, Jr. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (02)
[5]   Stability and instability of standing-wave solutions to one-dimensional quadratic-cubic Klein-Gordon equations [J].
Garrisi, Daniele .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (02)
[6]   Cnoidal waves for the quintic Klein-Gordon and Schrodinger equations: Existence and orbital instability [J].
Moraes, Gabriel E. Bittencourt ;
de Loreno, Guilherme .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 513 (01)
[7]   INSTABILITY OF THE STANDING WAVES FOR THE NONLINEAR KLEIN-GORDON EQUATIONS IN ONE DIMENSION [J].
Wu, Yifei .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (06) :4085-4103
[8]   Orbital stability of periodic standing waves for the cubic fractional nonlinear Schr?dinger equation [J].
Moraes, Gabriel E. Bittencourt ;
Borluk, Handan ;
de Loreno, Guilherme ;
Muslu, Gulcin M. ;
Natali, Fabio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 341 :263-291
[9]   ON THE STABILITY OF STANDING WAVES OF KLEIN-GORDON EQUATIONS IN A SEMICLASSICAL REGIME [J].
Ghimenti, Marco ;
Le Coz, Stefan ;
Squassina, Marco .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) :2389-2401
[10]   STRONG BLOW-UP INSTABILITY FOR STANDING WAVE SOLUTIONS TO THE SYSTEM OF THE QUADRATIC NONLINEAR KLEIN-GORDON EQUATIONS [J].
Miyazaki, Hayato .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (05) :2411-2445