Hölder Continuity of the Green Function and Markov Brothers’ Inequality

被引:0
作者
Mirosław Baran
Leokadia Bialas-Ciez
机构
[1] Jagiellonian University,Faculty of Mathematics and Computer Science, Institute of Mathematics
来源
Constructive Approximation | 2014年 / 40卷
关键词
Pluricomplex Green’s function; Hölder continuity property; Markov inequality; 41A17; 32U35;
D O I
暂无
中图分类号
学科分类号
摘要
Let VE be the pluricomplex Green function associated with a compact subset E of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{C}^{N}$\end{document}. The well-known Hölder continuity property of E means that there exist constants B>0,γ∈(0,1] such that VE(z)≤B dist(z,E)γ. The main result of this paper says that this condition is equivalent to a Vladimir Markov-type inequality; i.e., ∥DαP∥E≤M|α|(degP)m|α|(|α|!)1−m∥P∥E, where m,M>0 are independent of the polynomial P of N variables. We give some applications of this equivalence, e.g., for convex bodies in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{N}$\end{document}, for uniformly polynomially cuspidal sets and for some disconnect compact sets.
引用
收藏
页码:121 / 140
页数:19
相关论文
共 35 条
[1]  
Andrievski V.V.(2004)The highest smoothness of the Green function implies the highest density of a set Ark. Mat. 42 217-238
[2]  
Baran M.(1992)Plurisubharmonic extremal function and complex foliation for a complement of a convex subset of Mich. Math. J. 39 395-404
[3]  
Baran M.(1994)Markov inequality on sets with polynomial parametrization Ann. Pol. Math. 60 69-79
[4]  
Baran M.(2009)Cauchy–Poisson transform and polynomial inequalities Ann. Pol. Math. 95 199-206
[5]  
Baran M.(2012)Product property for capacities in Ann. Pol. Math. 106 19-29
[6]  
Bialas-Ciez L.(2013)On the best exponent in Markov inequality Potential Anal. 38 635-651
[7]  
Baran M.(1998)Markov sets in Bull. Pol. Acad. Sci., Math. 46 83-89
[8]  
Bialas-Ciez L.(2012) are not polar Ann. Pol. Math. 106 41-51
[9]  
Milówka B.(2008)Siciak’s extremal function via Bernstein and Markov constants for compact sets in Constr. Approx. 27 237-252
[10]  
Bialas-Ciez L.(2011)L-regularity of Markov sets and of m-perfect sets in the complex plane Ann. Mat. Pura Appl. (4) 190 209-224