An extension theorem for planar semimodular lattices

被引:0
作者
G. Grätzer
E. T. Schmidt
机构
[1] University of Manitoba,Department of Mathematics
[2] Mathematical Institute,undefined
[3] Budapest University of Technology and Economics,undefined
来源
Periodica Mathematica Hungarica | 2014年 / 69卷
关键词
Principal congruence; Order; Semimodular; Rectangular; Primary 06C10; Secondary 06B10;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every finite distributive lattice D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} can be represented as the congruence lattice of a rectangular lattice K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} in which all congruences are principal. We verify this result in a stronger form as an extension theorem.
引用
收藏
页码:32 / 40
页数:8
相关论文
共 20 条
[1]  
Czédli G(2012)Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices Algebra Univers. 67 313-345
[2]  
Czédli G(2012)Slim semimodular lattices. I. A visual approach Order 29 481-497
[3]  
Schmidt ET(2013)Slim semimodular lattices. II. A description by patchwork systems Order 30 689-721
[4]  
Czédli G(2013)Notes on planar semimodular lattices. VI. On the structure theorem of planar semimodular lattices Algebra Univers. 69 301-304
[5]  
Schmidt ET(2009)Notes on planar semimodular lattices. III. Rectangular lattices Acta Sci. Math. (Szeged) 75 29-48
[6]  
Grätzer G(2010)Notes on planar semimodular lattices. IV. The size of a minimal congruence lattice representation with rectangular lattices Acta Sci. Math. (Szeged) 76 3-26
[7]  
Grätzer G(1998)Congruence lattices of finite semimodular lattices Can. Math. Bull. 41 290-297
[8]  
Knapp E(1962)On congruence lattices of lattices Acta Math. Acad. Sci. Hung. 13 179-185
[9]  
Grätzer G(1999)On finite automorphism groups of simple arguesian lattices Stud. Sci. Math. Hung. 35 247-258
[10]  
Knapp E(2003)On the independence theorem of related structures for modular (arguesian) lattices Stud. Sci. Math. Hung. 40 1-12