Optimality Conditions in Differentiable Vector Optimization via Second-Order Tangent Sets

被引:0
作者
Bienvenido Jiménez
Vicente Novo
机构
[1] Departamento de Economía e Historia Económica,
[2] Facultad de Economía y Empresa,undefined
[3] Universidad de Salamanca,undefined
[4] Campus Miguel de Unamuno,undefined
[5] s/n,undefined
[6] 37007 Salamanca,undefined
[7] Departamento de Matemática Aplicada,undefined
[8] E.T.S.I. Industriales,undefined
[9] UNED,undefined
[10] c/ Juan del Rosal 12,undefined
[11] Apartado 60149,undefined
[12] 28080 Madrid,undefined
来源
Applied Mathematics and Optimization | 2004年 / 49卷
关键词
Vector optimization; Second-order optimality conditions for efficiency; Second-order tangent set; Asymptotic second-order cone; Projective tangent set; Lagrange multipliers; Strict efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
We provide second-order necessary and sufficient conditions for a point to be an efficient element of a set with respect to a cone in a normed space, so that there is only a small gap between necessary and sufficient conditions. To this aim, we use the common second-order tangent set and the asymptotic second-order cone utilized by Penot. As an application we establish second-order necessary conditions for a point to be a solution of a vector optimization problem with an arbitrary feasible set and a twice Fréchet differentiable objective function between two normed spaces. We also establish second-order sufficient conditions when the initial space is finite-dimensional so that there is no gap with necessary conditions. Lagrange multiplier rules are also given.
引用
收藏
页码:123 / 144
页数:21
相关论文
empty
未找到相关数据