Magnetic Properties of the Sm(Co0.45Fe0.15Cu0.40)5 Alloy Prepared by Strip Casting

被引:1
作者
Lukin A.A. [1 ]
Kolchugina N.B. [2 ]
Koshkid’ko Y.S. [3 ]
Kamynin A.V. [1 ]
Vasilenko D.Y. [4 ]
机构
[1] JSC Spetsmagnit, Moscow
[2] Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow
[3] Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw
[4] Ural Electomechanical Plant, Yekaterinburg
关键词
antiferromagnetic order; hysteretic characteristics; magnetic properties; Sm(Co[!sub]0.45[!/sub]Fe[!sub]0.15[!/sub]Cu[!sub]0.40[!/sub])[!sub]5[!/sub] alloy; strip casting; structure;
D O I
10.1134/S2075113318050192
中图分类号
学科分类号
摘要
The magnetic properties and phase composition of the Sm(Co0.45Fe0.15Cu0.40)5 alloy prepared by the strip-casting technique (the casting of alloy on a water-cooled copper wheel at a velocity of cooling surface of ~1 m/s) are studied. Curves of magnetization of thermally demagnetized starting plates (after strip casting) and plates subjected to low-temperature treatment at 350°С for 120 h and the hysteresis loops were measured in magnetizing fields of up to 140 kOe. It is shown that the magnetization of samples (σ140 and σr) substantially decreases after the annealing; in this case, the coercive force (jHc) increases abruptly. It is assumed that the observed regularities of magnetic hardening can be related to the existence of nanosized Cu-enriched areas, within which the antiferromagnetic order in the Sm(Co, Fe, Cu)5 lattice is realized. These areas in the ferromagnetic phase with the lower copper content can be domain-wall pinning centers. © 2018, Pleiades Publishing, Ltd.
引用
收藏
页码:900 / 905
页数:5
相关论文
共 21 条
  • [1] Hadjipanayis G.C., Tang W., Zhang Y., Chui S.T., Liu J.F., Chen C., Kronmuller H., High temperature 2: 17 magnets: Relationship of magnetic properties to microstructure and processing, IEEE Trans. Magn., 36, 5, pp. 3382-3387, (2000)
  • [2] Gopalan R., Hono K., Yan A., Gutfleisch O., Direct evidence for Cu concentration variation and its correlation to coercivity in Sm(Co<sub>0.74</sub>-Fe<sub>0.1</sub>Cu<sub>0.12</sub>Zr<sub>0.04</sub>)<sub>7.4</sub> ribbons, Scr. Mater., 60, pp. 764-767, (2009)
  • [3] Liu L., Liu Z., Chen R., Liu X., Yan A., Lee D., Li W., Effect of strip casting on microstructure and magnetic properties of 2:17 type Sm–Co sintered magnets, IEEE Trans. Magn., 50, 1, (2014)
  • [4] Liu Z., Liu L., Chen R.J., Sun Y.L., Lee D., Yan A.R., Optimization of temperature coefficient of remanence and magnetic properties of sintered Sm<sub>0.7</sub>Dy<sub>0.1</sub>Gd<sub>0.2</sub>(CobalFe<sub>0.2</sub>Cu<sub>0.08</sub>Zr<sub>0.025</sub>)<sub>7.2</sub> magnets prepared by strip-casting technique, IEEE Trans. Magn., 49, 12, pp. 5599-5603, (2013)
  • [5] Liu L., Liu Z., Zhang X., Feng Y., Wang C., Sun Y., Lee D., Yan A., Wu Q., Magnetization reversal process in (Sm, Dy, Gd) (Co, Fe, Cu, Zr)<sub>z</sub> magnets with different cellular structures, AIP Adv., 7, (2017)
  • [6] Machida H., Fujiwara T., Kamada R., Morimoto Y., Takezawa M., The high squareness Sm–Co magnet having H<sub>cb</sub> = 10.6 kOe at 150°C, AIP Adv., 7, (2017)
  • [7] Nishida Y., Endo M., Sakurada S., A modeling study of domain wall pinning in Sm<sub>2</sub>Co<sub>17</sub>-based magnets, J. Magn. Magn. Mater., 324, pp. 1948-1953, (2012)
  • [8] Sepehri-Amin H., Thielsch J., Fischbacher J., Ohkubo T., Schrefl T., Gutfleisch O., Hono K., Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co<sub>0.784</sub>Fe<sub>0.100</sub>Cu<sub>0.088</sub>Zr<sub>0.028</sub>)<sub>7.19</sub> sintered magnets, Acta Mater., 126, pp. 1-10, (2017)
  • [9] Sun W., Zhu M., Guo Z., Fang Y., Li W., The coercivity mechanism of sintered Sm(CobalFe<sub>0.245</sub>Cu<sub>0.07</sub>Zr<sub>0.02</sub>)<sub>7.8</sub> permanent magnets with different isothermal annealing time, Phys. B (Amsterdam), 476, pp. 154-157, (2015)
  • [10] Xiong X.Y., Ohkubo T., Koyama T., Ohashi K., Tawara Y., Hono K., The microstructure of sintered Sm(Co<sub>0.72</sub>Fe<sub>0.20</sub>Cu<sub>0.055</sub>Zr<sub>0.025</sub>)<sub>7.5</sub> permanent magnet studied by atom probe, Acta Mater., 52, pp. 737-748, (2004)