Limit theorems for linear random fields with tapered innovations. II: The stable case

被引:0
作者
Vygantas Paulauskas
Julius Damarackas
机构
[1] Vilnius University,Department of Mathematics and Informatics
[2] NYU-ECNU Institute of Mathematical Sciences at NYU Shanghai,undefined
来源
Lithuanian Mathematical Journal | 2021年 / 61卷
关键词
random linear fields; limit theorems; tapered distributions; primary 60G60; secondary 60G99; 60F17;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, we consider the limit behavior of partial-sum random field (r.f.) Snt1t2Xbn=∑k=1n1t1∑l=1n2t2Xk,lbn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left.{S}_n\left({t}_1,{t}_2;\right)X\left(b\left(\mathbf{n}\right)\right)\right)={\sum}_{k=1}^{\left[{n}_1{t}_1\right]}{\sum}_{l=1}^{\left[{n}_2{t}_2\right]}{X}_{k,l}\left(b\left(\mathbf{n}\right)\right), $$\end{document} where Xk,lbn=∑i=0∞∑j=0∞ci,jξk−i,l−jbnkl∈ℤ,n≥1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{{X}_{k,l}\left(b\left(\mathbf{n}\right)\right)={\sum}_{i=0}^{\infty }{\sum}_{j=0}^{\infty }{c}_{i,j}{\upxi}_{k-i,l-j}\left(b\left(\mathbf{n}\right)\right),k,l\in \mathrm{\mathbb{Z}}\right\},n\ge 1, $$\end{document} is a family (indexed by n = (n1, n2), ni ≥ 1) of linear r.f.s with filter ci,j = aibj and innovations ξk,l(b(n)) having heavy-tailed tapered distributions with tapering parameter b(n) growing to infinity as n → ∞. In [V. Paulauskas, Limit theorems for linear random fields with tapered innovations. I: The Gaussian case, Lith. Math. J., 61(2):261–273, 2021], we considered the so-called hard tapering as b(n) grows relatively slowly and the limit r.f.s for appropriately normalized Sn(t1, t2;X(b(n))) are Gaussian. In this paper, we consider the case of soft tapering where b(n) grows more rapidly in comparison with the case of hard tapering and stable limit r.f.s.We consider cases where the sequences {ai} and {bj} are long-range, short-range, and negatively dependent.
引用
收藏
页码:502 / 517
页数:15
相关论文
共 10 条