The Uniformisation of the Equation zw=wz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^w=w^z$$\end{document}

被引:0
作者
A. F. Beardon
机构
[1] Centre for Mathematical Sciences,
关键词
Uniformisation; Complex exponents; Lambert function; 30D05; 30F10;
D O I
10.1007/s40315-021-00369-6
中图分类号
学科分类号
摘要
The positive solutions of the equation xy=yx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^y = y^x$$\end{document} have been discussed for over two centuries. Goldbach found a parametric form for the solutions, and later a connection was made with the classical Lambert function, which was also studied by Euler. Despite the attention given to the real equation xy=yx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^y=y^x$$\end{document}, the complex equation zw=wz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^w = w^z$$\end{document} has virtually been ignored in the literature. In this expository paper, we suggest that the problem should not be simply to parametrise the solutions of the equation, but to uniformize it. Explicitly, we construct a pair z(t) and w(t) of functions of a complex variable t that are holomorphic functions of t lying in some region D of the complex plane that satisfy the equation z(t)w(t)=w(t)z(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z(t)^{w(t)} = w(t)^{z(t)}$$\end{document} for t in D. Moreover, when t is positive these solutions agree with those of xy=yx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^y=y^x$$\end{document}.
引用
收藏
页码:123 / 134
页数:11
相关论文
共 21 条
  • [1] Beardon AF(1966)The real solutions of Math. Mag. 89 131-134
  • [2] Corless RM(1996)Unwinding the branches of the Lambert Math. Sci. 21 1-7
  • [3] Hare DEG(1966) function Adv. Comput. Math. 5 329-359
  • [4] Jeffrey DJ(1911)On the Lambert Unterrichts. für Math. 17 70-73
  • [5] Corless RM(1961) function Am. Math. Mon. 68 856-861
  • [6] Gonnet GH(1967)Über die Gleichung Am. Math. Mon. 74 298-300
  • [7] Hare DEG(1998)Algebraic number fields and the Diophantine equation C. R. Math. Rep. Acad. Sci. Can. 20 71-76
  • [8] Jeffrey DJ(1981)On the rational solutions of Am. Math. Mon. 88 235-252
  • [9] Knuth DE(2003) with Teach. Math. Comput. Sci. 1–2 219-233
  • [10] Flechsenhaar A(1916)Exact rational solutions of a transcendental equation Am. Math. Mon. 23 233-237