Distinct modes of winter arctic sea ice motion and their associations with surface wind variability

被引:0
|
作者
Bingyi Wu
Mark A. Johnson
机构
[1] Chinese Academy of Meteorological Sciences,Arctic Region Supercomputing Center
[2] University of Alaska Fairbanks,Institute of Marine Science
[3] University of Alaska Fairbanks,undefined
来源
关键词
distinct mode; Arctic sea ice motion; Arctic surface wind forcing;
D O I
暂无
中图分类号
学科分类号
摘要
Using monthly mean sea ice velocity data obtained from the International Arctic Buoy Programme (IABP) for the period of 1979–1998 and the monthly mean NCEP/NCAR re-analysis dataset (1960–2002), we investigated the spatiotemporal evolution of the leading sea ice motion mode (based on a complex correlation matrix constructed of normalized sea ice motion velocity) and their association with sea level pressure (SLP) and the predominant modes of surface wind field variability. The results indicate that the leading winter sea ice motion mode’s spatial evolution is characterized by two alternating and distinct sea ice modes, or their linear combination. One mode (M1) shows a nearly closed cyclonic or anti-cyclonic circulation anomaly in the Arctic Basin and its marginal seas, resembling to a large extent the response of sea ice motion to the Arctic Oscillation (AO), as many previous studies have revealed. The other mode (M2) displays a coherent cyclonic or anti-cyclonic circulation anomaly with its center close to the Laptev Sea, which has not been identified in previous observational studies. In fact, M1 and M2 respectively reflect the responses of sea ice motion to two predominant modes of winter surface wind variability north of 70°N, which well correspond, with slight differences, to the first two modes of EOF analysis of winter monthly mean SLP north of 70°N. These slight differences in SLP anomalies lead to a difference of M2 from the response of sea ice motion to the dipole anomaly. Although the AO significantly influences sea ice motion, it is not crucial for the existence of M1. The new sea ice motion mode (M2) has the largest variance and clearly differs from the response of winter monthly mean sea ice motion to the dipole anomaly in SLP fields, and corresponding SLP anomalies also show differences compared to the dipole anomaly. This study indicates that in the Arctic Basin and its marginal seas, slight differences in SLP anomaly patterns can force distinctly different sea ice motion anomalies.
引用
收藏
页码:211 / 229
页数:18
相关论文
共 50 条
  • [41] Temporal and spatial change in the relationship between sea-ice motion and wind in the Arctic
    Maeda, Ken
    Kimura, Noriaki
    Yamaguchi, Hajime
    POLAR RESEARCH, 2020, 39
  • [42] Variability in Arctic sea ice optical properties
    Perovich, DK
    Roesler, CS
    Pegau, WS
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1998, 103 (C1) : 1193 - 1208
  • [43] Arctic sea-ice variability revisited
    Stroeve, Julienne
    Frei, Allan
    McCreight, James
    Ghatak, Debjani
    ANNALS OF GLACIOLOGY, VOL 48, 2008, 48 : 71 - 81
  • [44] On ocean and sea ice modes of variability in the Bering Sea
    Danielson, Seth
    Curchitser, Enrique
    Hedstrom, Kate
    Weingartner, Thomas
    Stabeno, Phyllis
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116
  • [45] Impacts of Autumn Arctic Sea Ice Concentration Changes on the East Asian Winter Monsoon Variability
    Chen, Zhang
    Wu, Renguang
    Chen, Wen
    JOURNAL OF CLIMATE, 2014, 27 (14) : 5433 - 5450
  • [46] Impact of Daily Arctic Sea Ice Variability in CAM3.0 during Fall and Winter
    Dammann, Dyre O.
    Bhatt, Uma S.
    Langen, Peter L.
    Krieger, Jeremy R.
    Zhang, Xiangdong
    JOURNAL OF CLIMATE, 2013, 26 (06) : 1939 - 1955
  • [47] Warm Arctic, Increased Winter Sea Ice Growth?
    Petty, Alek A.
    Holland, Marika M.
    Bailey, David A.
    Kurtz, Nathan T.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (23) : 12922 - 12930
  • [48] Fracture of the winter sea ice cover on the Arctic ocean
    Schulson, EM
    Hibler, WD
    COMPTES RENDUS PHYSIQUE, 2004, 5 (07) : 753 - 767
  • [49] On the Potential for Abrupt Arctic Winter Sea Ice Loss
    Bathiany, S.
    Notz, D.
    Mauritsen, T.
    Raedel, G.
    Brovkin, V.
    JOURNAL OF CLIMATE, 2016, 29 (07) : 2703 - 2719
  • [50] Abrupt decline in the Arctic winter sea ice cover
    Comiso, Josefino C.
    GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (18)