Distinct modes of winter arctic sea ice motion and their associations with surface wind variability

被引:0
|
作者
Bingyi Wu
Mark A. Johnson
机构
[1] Chinese Academy of Meteorological Sciences,Arctic Region Supercomputing Center
[2] University of Alaska Fairbanks,Institute of Marine Science
[3] University of Alaska Fairbanks,undefined
来源
关键词
distinct mode; Arctic sea ice motion; Arctic surface wind forcing;
D O I
暂无
中图分类号
学科分类号
摘要
Using monthly mean sea ice velocity data obtained from the International Arctic Buoy Programme (IABP) for the period of 1979–1998 and the monthly mean NCEP/NCAR re-analysis dataset (1960–2002), we investigated the spatiotemporal evolution of the leading sea ice motion mode (based on a complex correlation matrix constructed of normalized sea ice motion velocity) and their association with sea level pressure (SLP) and the predominant modes of surface wind field variability. The results indicate that the leading winter sea ice motion mode’s spatial evolution is characterized by two alternating and distinct sea ice modes, or their linear combination. One mode (M1) shows a nearly closed cyclonic or anti-cyclonic circulation anomaly in the Arctic Basin and its marginal seas, resembling to a large extent the response of sea ice motion to the Arctic Oscillation (AO), as many previous studies have revealed. The other mode (M2) displays a coherent cyclonic or anti-cyclonic circulation anomaly with its center close to the Laptev Sea, which has not been identified in previous observational studies. In fact, M1 and M2 respectively reflect the responses of sea ice motion to two predominant modes of winter surface wind variability north of 70°N, which well correspond, with slight differences, to the first two modes of EOF analysis of winter monthly mean SLP north of 70°N. These slight differences in SLP anomalies lead to a difference of M2 from the response of sea ice motion to the dipole anomaly. Although the AO significantly influences sea ice motion, it is not crucial for the existence of M1. The new sea ice motion mode (M2) has the largest variance and clearly differs from the response of winter monthly mean sea ice motion to the dipole anomaly in SLP fields, and corresponding SLP anomalies also show differences compared to the dipole anomaly. This study indicates that in the Arctic Basin and its marginal seas, slight differences in SLP anomaly patterns can force distinctly different sea ice motion anomalies.
引用
收藏
页码:211 / 229
页数:18
相关论文
共 50 条
  • [1] Distinct modes of winter arctic sea ice motion and their associations with surface wind variability
    Wu Bingyi
    Johnson, Mark A.
    ADVANCES IN ATMOSPHERIC SCIENCES, 2010, 27 (02) : 211 - 229
  • [2] Distinct Modes of Winter Arctic Sea Ice Motion and Their Associations with Surface Wind Variability
    武炳义
    Mark A. JOHNSON
    AdvancesinAtmosphericSciences, 2010, 27 (02) : 211 - 229
  • [3] Two wind-driven modes of winter sea ice variability in the Barents Sea
    Herbaut, Christophe
    Houssais, Marie-Noelle
    Close, Sally
    Blaizot, Anne-Cecile
    DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2015, 106 : 97 - 115
  • [4] Dynamical prediction of Arctic sea ice modes of variability
    Neven S. Fučkar
    Virginie Guemas
    Nathaniel C. Johnson
    Francisco J. Doblas-Reyes
    Climate Dynamics, 2019, 52 : 3157 - 3173
  • [5] Dynamical prediction of Arctic sea ice modes of variability
    Fuckar, Neven S.
    Guemas, Virginie
    Johnson, Nathaniel C.
    Doblas-Reyes, Francisco J.
    CLIMATE DYNAMICS, 2019, 52 (5-6) : 3157 - 3173
  • [6] Dipole anomaly in the Arctic atmosphere and winter Arctic sea ice motion
    WU Bingyi1
    2. International Arctic Research Center
    Science in China(Series D:Earth Sciences), 2005, (09) : 203 - 210
  • [7] Dipole anomaly in the Arctic atmosphere and winter Arctic sea ice motion
    Wu, BY
    Zhang, RH
    Wang, J
    SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2005, 48 (09): : 1529 - 1536
  • [8] Dipole anomaly in the Arctic atmosphere and winter Arctic sea ice motion
    Bingyi Wu
    Renhe Zhang
    Jia Wang
    Science in China Series D: Earth Sciences, 2005, 48 : 1529 - 1536
  • [9] Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent
    Ogi, Masayo
    Yamazaki, Koji
    Wallace, John M.
    GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [10] Dominant patterns of winter Arctic surface wind variability
    WU Bingyi
    John Walsh
    LIU Jiping
    ZHANG Xiangdong
    Advances in Polar Science, 2014, 25 (04) : 246 - 260