k-fractional integral trapezium-like inequalities through (h,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(h,m)$\end{document}-convex and (α,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\alpha,m)$\end{document}-convex mappings

被引:0
作者
Hao Wang
Tingsong Du
Yao Zhang
机构
[1] China Three Gorges University,Department of Mathematics, College of Science
关键词
-convex functions; -convex functions; -fractional integrals; 26A33; 26A51; 26D07; 26D20; 41A55;
D O I
10.1186/s13660-017-1586-6
中图分类号
学科分类号
摘要
In this paper, a new general identity for differentiable mappings via k-fractional integrals is derived. By using the concept of (h,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(h,m)$\end{document}-convexity, (α,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\alpha,m)$\end{document}-convexity and the obtained equation, some new trapezium-like integral inequalities are established. The results presented provide extensions of those given in earlier works.
引用
收藏
相关论文
共 96 条
  • [1] Du TS(2016)Properties and integral inequalities of Hadamard-Simpson type for the generalized J. Nonlinear Sci. Appl. 9 3112-3126
  • [2] Liao JG(2012)-preinvex functions Kyungpook Math. J. 52 307-317
  • [3] Li YJ(2017)On generalizations of the Hadamard inequality for Appl. Math. Comput. 293 358-369
  • [4] Set E(2016)-convex functions Ukr. Math. J. 67 1552-1571
  • [5] Sardari M(2014)A generalization of Simpson’s inequality via differentiable mapping using extended Appl. Math. Comput. 234 52-57
  • [6] Ozdemir ME(2014)-convex functions Miskolc Math. Notes 15 635-649
  • [7] Rooin J(2015)On some new inequalities of Hermite-Hadamard type for functions whose derivatives are Science Asia 41 357-361
  • [8] Du TS(2013)-convex in the second sense in the absolute value Math. Comput. Model. 57 2403-2407
  • [9] Li YJ(2015)Inequalities for J. Comput. Anal. Appl. 18 655-661
  • [10] Yang ZQ(2015)-preinvex functions Bull. Korean Math. Soc. 52 707-716