Stability and instability of Ricci solitons

被引:0
作者
Klaus Kröncke
机构
[1] Universität Potsdam,Institut für Mathematik
来源
Calculus of Variations and Partial Differential Equations | 2015年 / 53卷
关键词
53C44; 58E11; 37C75;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the volume-normalized Ricci flow close to compact shrinking Ricci solitons. We show that if a compact Ricci soliton (M,g)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M,g)$$\end{document} is a local maximum of Perelman’s shrinker entropy, any normalized Ricci flow starting close to it exists for all time and converges towards a Ricci soliton. If g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document} is not a local maximum of the shrinker entropy, we show that there exists a nontrivial normalized Ricci flow emerging from it. These theorems are analogues of results in the Ricci-flat and in the Einstein case (Haslhofer and Müller, arXiv:1301.3219, 2013; Kröncke, arXiv:1312.2224, 2013).
引用
收藏
页码:265 / 287
页数:22
相关论文
共 39 条
[1]  
Cao H-D(2012)On second variation of Perelman’s Ricci shrinker entropy Math. Ann. 353 747-763
[2]  
Zhu M(1996)On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties Nucl. Phys. B 478 758-778
[3]  
Chave T(2005)On the stability of Riemannian manifold with parallel spinors Invent. Math. 161 151-176
[4]  
Galliano V(2007)On the variational stability of Kähler–Einstein metrics Commun. Anal. Geom. 15 669-693
[5]  
Dai X(2011)On Ricci solitons of cohomogeneity one Ann. Glob. Anal. Geom. 39 259-292
[6]  
Wang X(2008)Ricci solitons: the equation point of view Manuscr. Math. 127 345-367
[7]  
Wei G(2013)Lower diameter bounds for compact shrinking Ricci solitons Asian J. Math. 17 17-32
[8]  
Dai X(2002)Stability of the Ricci flow at Ricci-flat metrics Commun. Anal. Geom. 10 741-777
[9]  
Wang X(1982)Three-manifolds with positive Ricci curvature J. Differ. Geom. 17 255-306
[10]  
Wei G(1995)The formation of singularities in the Ricci flow Surv. Differ. Geom. 2 7-136