Finite groups whose n-maximal subgroups are σ-subnormal

被引:0
作者
Wenbin Guo
Alexander N. Skiba
机构
[1] University of Science and Technology of China,School of Mathematical Sciences
[2] Francisk Skorina Gomel State University,Department of Mathematics and Technologies of Programming
来源
Science China Mathematics | 2019年 / 62卷
关键词
finite group; -maximal subgroup; -subnormal subgroup; -quasinormal subgroup; -soluble group; -nilpotent group; 20D10; 20D20; 20D30; 20D35;
D O I
暂无
中图分类号
学科分类号
摘要
Let σ = {σi | i ∈ I} be some partition of the set of all primes P. A set H of subgroups of G is said to be a complete Hallσ-set of G if every member ≠ 1 of H is a Hall σi-subgroup of G, for some i ∈ I, and H contains exactly one Hall σi-subgroup of G for every σi ∈ σ(G). A subgroup H of G is said to be: σ-permutable or σ-quasinormal in G if G possesses a complete Hall σ-set H such that HAx = AxH for all A ∈ H and x ∈ G: σ-subnormal in G if there is a subgroup chain A = A0 ≤ A1 ≤ · · · ≤ At = G such that either Ai−1⊲_Ai\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A_{i - 1}}\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \triangleleft } {A_i}$$\end{document} or Ai=(Ai-1)Ai is a finite σi-group for some σi ∈ σ for all i = 1;:::; t.
引用
收藏
页码:1355 / 1372
页数:17
相关论文
共 33 条
[1]  
Agrawal R K(1976)Generalized center and hypercenter of a finite group Proc Amer Math Soc 54 13-21
[2]  
Ballester-Bolinches A(1992)On the lattice of F-subnormal subgroups J Algebra 148 42-52
[3]  
Doerk K(2003)Cover-avoidance properties and the structure of finite groups J Pure Appl Algebra 181 297-308
[4]  
Pérez-Ramos M D(2007)X-semipermutable subgroups of finite groups J Algebra 315 31-41
[5]  
Guo X(2015)Finite groups with permutable complete Wielandt sets of subgroups J Group Theory 18 191-200
[6]  
Shum K P(2017)Finite groups with H-permutable subgroups Commun Math Stat 5 83-92
[7]  
Guo W(1954)Normalteiler und maximale Untergruppen endlicher Gruppen Math Z 60 409-434
[8]  
Shum K P(1963)Finite groups with invariant fourth maximal subgroups Math Z 83 82-89
[9]  
Skiba A N(1978)Untergruppenverbande endlicher Gruppen, die den subnormalteilerverband echt enthalten Arch Math 30 225-228
[10]  
Guo W(2012)On the permutability of n-maximal subgroups with Schmidt subgroups Tr Inst Mat Mekh UrO RAN 18 125-130