Homomorphic images and rationalizations based on the Eilenberg-Maclane spaces

被引:0
作者
Dae-Woong Lee
机构
[1] Chonbuk National University,Department of Mathematics
来源
Czechoslovak Mathematical Journal | 2005年 / 55卷
关键词
Lie bracket; tensor algebra; rationalization; Steenrod power;
D O I
暂无
中图分类号
学科分类号
摘要
Are there any kinds of self maps on the loop structure whose induced homomorphic images are the Lie brackets in tensor algebra? We will give an answer to this question by defining a self map of ΩΣK(\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}$$ \end{document}, 2d), and then by computing efficiently some self maps. We also study the topological rationalization properties of the suspension of the Eilenberg-MacLane spaces. These results will be playing a powerful role in the computation of the same n-type problems and giving us an information about the rational homotopy equivalence.
引用
收藏
页码:465 / 470
页数:5
相关论文
共 3 条
[1]  
McGibbon C. A.(1982)Self maps of projective spaces Trans. Amer. Math. Soc. 271 325-346
[2]  
Morisugi K.(1998)Projective elements in K-theory and self maps of Σℂ J. Math. Kyoto Univ. 38 151-165
[3]  
Sullivan D.(1974)The genetics of homotopy theory and the Adams conjecture Ann. of Math. 100 1-79