A Note on the Majority Dynamics in Inhomogeneous Random Graphs

被引:0
|
作者
Yilun Shang
机构
[1] Northumbria University,Department of Computer and Information Sciences
来源
Results in Mathematics | 2021年 / 76卷
关键词
Random graph; majority dynamics; inhomogeneous graph; 05C80; 60C05; 60K35; 91D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we study discrete time majority dynamics over an inhomogeneous random graph G obtained by including each edge e in the complete graph Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} independently with probability pn(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_n(e)$$\end{document}. Each vertex is independently assigned an initial state +1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+1$$\end{document} (with probability p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document}) or -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document} (with probability 1-p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-p_+$$\end{document}), updated at each time step following the majority of its neighbors’ states. Under some regularity and density conditions of the edge probability sequence, if p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document} is smaller than a threshold, then G will display a unanimous state -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document} asymptotically almost surely, meaning that the probability of reaching consensus tends to one as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. The consensus reaching process has a clear difference in terms of the initial state assignment probability: In a dense random graph p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document} can be near a half, while in a sparse random graph p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document} has to be vanishing. The size of a dynamic monopoly in G is also discussed.
引用
收藏
相关论文
共 50 条
  • [31] SUPERLOGARITHMIC CLIQUES IN DENSE INHOMOGENEOUS RANDOM GRAPHS
    McKinley, Gweneth
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (03) : 1772 - 1800
  • [32] The coupling method for inhomogeneous random intersection graphs
    Rybarczyk, Katarzyna
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [33] Local limits of spatial inhomogeneous random graphs
    van der Hofstad, Remco
    van der Hoorn, Pim
    Maitra, Neeladri
    ADVANCES IN APPLIED PROBABILITY, 2023, 55 (03) : 793 - 840
  • [34] Duality in Inhomogeneous Random Graphs, and the Cut Metric
    Janson, Svante
    Riordan, Oliver
    RANDOM STRUCTURES & ALGORITHMS, 2011, 39 (03) : 399 - 411
  • [35] Bootstrap Percolation in Directed Inhomogeneous Random Graphs
    Detering, Nils
    Meyer-Brandis, Thilo
    Panagiotou, Konstantinos
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [36] FIRST PASSAGE PERCOLATION ON INHOMOGENEOUS RANDOM GRAPHS
    Kolossvary, Istvan
    Komjathy, Julia
    ADVANCES IN APPLIED PROBABILITY, 2015, 47 (02) : 589 - 610
  • [37] Multivariate Hawkes processes on inhomogeneous random graphs
    Agathe-Nerine, Zoe
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 152 : 86 - 148
  • [38] The Largest Component in Subcritical Inhomogeneous Random Graphs
    Turova, Tatyana S.
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (01): : 131 - 154
  • [39] Continuum limit of critical inhomogeneous random graphs
    Bhamidi, Shankar
    Sen, Sanchayan
    Wang, Xuan
    PROBABILITY THEORY AND RELATED FIELDS, 2017, 169 (1-2) : 565 - 641
  • [40] Continuum limit of critical inhomogeneous random graphs
    Shankar Bhamidi
    Sanchayan Sen
    Xuan Wang
    Probability Theory and Related Fields, 2017, 169 : 565 - 641