A Note on the Majority Dynamics in Inhomogeneous Random Graphs

被引:0
|
作者
Yilun Shang
机构
[1] Northumbria University,Department of Computer and Information Sciences
来源
Results in Mathematics | 2021年 / 76卷
关键词
Random graph; majority dynamics; inhomogeneous graph; 05C80; 60C05; 60K35; 91D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we study discrete time majority dynamics over an inhomogeneous random graph G obtained by including each edge e in the complete graph Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} independently with probability pn(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_n(e)$$\end{document}. Each vertex is independently assigned an initial state +1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+1$$\end{document} (with probability p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document}) or -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document} (with probability 1-p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-p_+$$\end{document}), updated at each time step following the majority of its neighbors’ states. Under some regularity and density conditions of the edge probability sequence, if p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document} is smaller than a threshold, then G will display a unanimous state -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document} asymptotically almost surely, meaning that the probability of reaching consensus tends to one as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. The consensus reaching process has a clear difference in terms of the initial state assignment probability: In a dense random graph p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document} can be near a half, while in a sparse random graph p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document} has to be vanishing. The size of a dynamic monopoly in G is also discussed.
引用
收藏
相关论文
共 50 条
  • [21] Cliques in geometric inhomogeneous random graphs
    Michielan, Riccardo
    Stegehuis, Clara
    JOURNAL OF COMPLEX NETWORKS, 2022, 10 (01)
  • [22] The Frechet Mean of Inhomogeneous Random Graphs
    Meyer, Francois G.
    COMPLEX NETWORKS & THEIR APPLICATIONS X, VOL 1, 2022, 1015 : 207 - 219
  • [23] Number of edges in inhomogeneous random graphs
    Zhishui Hu
    Liang Dong
    Science China Mathematics, 2021, 64 : 1321 - 1330
  • [24] Parameterized clique on inhomogeneous random graphs
    Friedrich, Tobias
    Krohmer, Anton
    DISCRETE APPLIED MATHEMATICS, 2015, 184 : 130 - 138
  • [25] Connectivity in inhomogeneous random key graphs
    Yagan, Osman
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 2459 - 2463
  • [26] Cliques in Dense Inhomogeneous Random Graphs
    Dolezal, Martin
    Hladky, Jan
    Mathe, Andras
    RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (02) : 275 - 314
  • [27] NOTE ON RANDOM SIGNED GRAPHS
    PHANEENDHRUDU, V
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1979, 2 (07): : 269 - 270
  • [28] A Note on Treewidth in Random Graphs
    Wang, Chaoyi
    Liu, Tian
    Cui, Peng
    Xu, Ke
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, 2011, 6831 : 491 - +
  • [29] Connectivity of inhomogeneous random key graphs intersecting inhomogeneous Erdos-Renyi graphs
    Eletreby, Rashad
    Yagan, Osman
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2920 - 2924
  • [30] Perfect matchings in inhomogeneous random bipartite graphs in random environment
    Bochi, Jairo
    Iommi, Godofredo
    Ponce, Mario
    CUBO-A MATHEMATICAL JOURNAL, 2022, 24 (02): : 263 - 272