A Note on the Majority Dynamics in Inhomogeneous Random Graphs

被引:0
|
作者
Yilun Shang
机构
[1] Northumbria University,Department of Computer and Information Sciences
来源
Results in Mathematics | 2021年 / 76卷
关键词
Random graph; majority dynamics; inhomogeneous graph; 05C80; 60C05; 60K35; 91D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we study discrete time majority dynamics over an inhomogeneous random graph G obtained by including each edge e in the complete graph Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} independently with probability pn(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_n(e)$$\end{document}. Each vertex is independently assigned an initial state +1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+1$$\end{document} (with probability p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document}) or -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document} (with probability 1-p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-p_+$$\end{document}), updated at each time step following the majority of its neighbors’ states. Under some regularity and density conditions of the edge probability sequence, if p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document} is smaller than a threshold, then G will display a unanimous state -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document} asymptotically almost surely, meaning that the probability of reaching consensus tends to one as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. The consensus reaching process has a clear difference in terms of the initial state assignment probability: In a dense random graph p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document} can be near a half, while in a sparse random graph p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document} has to be vanishing. The size of a dynamic monopoly in G is also discussed.
引用
收藏
相关论文
共 50 条
  • [11] Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs
    Komjathy, Julia
    Lodewijks, Bas
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (03) : 1309 - 1367
  • [12] A Note on Inhomogeneous Percolation on Ladder Graphs
    de Lima, Bernardo N. B.
    Sanna, Humberto C.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (03): : 827 - 833
  • [13] A Note on Inhomogeneous Percolation on Ladder Graphs
    Bernardo N. B. de Lima
    Humberto C. Sanna
    Bulletin of the Brazilian Mathematical Society, New Series, 2020, 51 : 827 - 833
  • [14] Majority-vote model on random graphs
    Pereira, LFC
    Moreira, FGB
    PHYSICAL REVIEW E, 2005, 71 (01)
  • [15] The Majority and Minority Models on Regular and Random Graphs
    Cannings, Chris
    2009 INTERNATIONAL CONFERENCE ON GAME THEORY FOR NETWORKS (GAMENETS 2009), 2009, : 704 - 719
  • [16] Number of edges in inhomogeneous random graphs
    Zhishui Hu
    Liang Dong
    Science China(Mathematics), 2021, 64 (06) : 1321 - 1330
  • [17] Bootstrap percolation in inhomogeneous random graphs
    Amini, Hamed
    Fountoulakis, Nikolaos
    Panagiotou, Konstantinos
    ADVANCES IN APPLIED PROBABILITY, 2024, 56 (01) : 156 - 204
  • [18] Number of edges in inhomogeneous random graphs
    Hu, Zhishui
    Dong, Liang
    SCIENCE CHINA-MATHEMATICS, 2021, 64 (06) : 1321 - 1330
  • [19] The phase transition in inhomogeneous random graphs
    Bollobas, Bela
    Janson, Svante
    Riordan, Oliver
    RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (01) : 3 - 122
  • [20] Critical behavior in inhomogeneous random graphs
    van der Hofstad, Remco
    RANDOM STRUCTURES & ALGORITHMS, 2013, 42 (04) : 480 - 508