A Note on the Majority Dynamics in Inhomogeneous Random Graphs

被引:0
|
作者
Yilun Shang
机构
[1] Northumbria University,Department of Computer and Information Sciences
来源
Results in Mathematics | 2021年 / 76卷
关键词
Random graph; majority dynamics; inhomogeneous graph; 05C80; 60C05; 60K35; 91D30;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we study discrete time majority dynamics over an inhomogeneous random graph G obtained by including each edge e in the complete graph Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} independently with probability pn(e)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_n(e)$$\end{document}. Each vertex is independently assigned an initial state +1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+1$$\end{document} (with probability p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document}) or -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document} (with probability 1-p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-p_+$$\end{document}), updated at each time step following the majority of its neighbors’ states. Under some regularity and density conditions of the edge probability sequence, if p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document} is smaller than a threshold, then G will display a unanimous state -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document} asymptotically almost surely, meaning that the probability of reaching consensus tends to one as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. The consensus reaching process has a clear difference in terms of the initial state assignment probability: In a dense random graph p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document} can be near a half, while in a sparse random graph p+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_+$$\end{document} has to be vanishing. The size of a dynamic monopoly in G is also discussed.
引用
收藏
相关论文
共 50 条
  • [11] Best response dynamics on random graphs
    Chellig, Jordan
    Durbac, Calina
    Fountoulakis, Nikolaos
    GAMES AND ECONOMIC BEHAVIOR, 2022, 131 : 141 - 170
  • [12] METASTABILITY FOR GLAUBER DYNAMICS ON RANDOM GRAPHS
    Dommers, S.
    Den Hollander, F.
    Jovanovski, O.
    Nardi, F. R.
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04) : 2130 - 2158
  • [13] A Note on the Vertex Degree Distribution of Random Intersection Graphs
    Mindaugas Bloznelis
    Lithuanian Mathematical Journal, 2020, 60 : 452 - 455
  • [14] A Note on the Vertex Degree Distribution of Random Intersection Graphs
    Bloznelis, Mindaugas
    LITHUANIAN MATHEMATICAL JOURNAL, 2020, 60 (04) : 452 - 455
  • [15] A Note on the Existence of Fractional f-factors in Random Graphs
    Jian-sheng CAI
    Xiao-yang WANG
    Gui-ying YAN
    Acta Mathematicae Applicatae Sinica, 2014, (03) : 677 - 680
  • [16] A note on the existence of fractional f-factors in random graphs
    Jian-sheng Cai
    Xiao-yang Wang
    Gui-ying Yan
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 677 - 680
  • [17] A Note on the Existence of Fractional f-factors in Random Graphs
    Cai, Jian-sheng
    Wang, Xiao-yang
    Yan, Gui-ying
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (03): : 677 - 680
  • [18] Parallel dynamics of disordered Ising spin systems on random graphs
    Hatchett, JPL
    SCIENCE OF COMPLEX NETWORKS: FROM BIOLOGY TO THE INTERNET AND WWW, 2005, 776 : 150 - 156
  • [19] Percolation in majority dynamics
    Amir, Gideon
    Baldasso, Rangel
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
  • [20] On MAXCUT in strictly supercritical random graphs, and coloring of random graphs and random tournaments
    Gishholiner, Lior
    Krivelevich, Michael
    Kronenberg, Gal
    RANDOM STRUCTURES & ALGORITHMS, 2018, 52 (04) : 545 - 559